Σ **5ATE**

Failure prognostics on large constellations with selected use of AI

CLEAN SPACE DAYS

ZERO DEBRIS FRAMEWORK

8th October 2024

Ing. Chiara Brighenti

TD – Controls & Diagnostics

Failure prognostics on large constellations with selected use of AI

SATE - Chiara Brighenti

Slide 1 / 14 Clean Space Days 2024 8/10/2024

Motivation

- **>** Optimise **operations, maintenance** and **interaction** plans in fleets
- **D** Reduce risks of debris and downservices
- **Speed up troubleshooting** to reduce reaction times

OUR GOAL IS TO PROVIDE SOLUTIONS **ENHANCING SAFETY AND RELIABILITY** OF SATELLITES AND CONSTELLATIONS

 $\Sigma SATE <$

Failure prognostics on large constellations with selected use of AI SATE - Chiara Brighenti

Slide 2 / 14 Clean Space Days 2024 8/10/2024

CLUE for predictive diagnostics

Modular and customised software solution with possibility of **on-board or ground** deployment.

It makes **selected use of AI** with general and reusable approach, rapid configuration and validation for the whole constellation.

 $\Sigma SATE <$

- TRL 4 on-board space applications
 TRL 8 ground space applications
- ✓ TRL 4 in energy applications
- ✓ TRL 9 since 2021 in automotive applications

Failure prognostics on large constellations with selected use of AI SATE - Chiara Brighenti

Slide 3 / 14 Clean Space Days 2024 8/10/2024

CLUE Ground deployment

Failure prognostics on large constellations with selected use of AI

SATE - Chiara Brighenti

 Σ sate \langle

Slide 4 / 14 Clean Space Days 2024 8/10/2024

Selected use of AI to tackle challenges

- Al based approach generality and **re-usability** in different application scenarios (different monitored subsystems, constellations-wise)
- >> On-board deployment with **limited computational resources**
- **>** Trustability
- Data availability (especially under failure conditions) and quality
- **>** Algorithms **robustness** to variety of nominal **contexts** and **ageing** conditions
- **>** Reconfigurability

Failure prognostics on large constellations with selected use of AI SATE - Chiara Brighenti Σ sate (

Slide 5 / 14 Clean Space Days 2024 8/10/2024

Reference behaviour with selected use of Al

Failure prognostics on large constellations with selected use of AI

SATE - Chiara Brighenti

 Σ sate \langle

Slide 6 / 14 Clean Space Days 2024 8/10/2024 **Reference behaviour characterisation**

Failure prognostics on large constellations with selected use of AI

SATE - Chiara Brighenti

 Σ sate \langle

Slide 7 / 14 Clean Space Days 2024 8/10/2024

Reference models creation

Failure prognostics on large constellations with selected use of AI

SATE - Chiara Brighenti

 Σ sate (

Slide 8 / 14 Clean Space Days 2024 8/10/2024

Health status assessment

Failure prognostics on large constellations with selected use of AI

SATE - Chiara Brighenti

 Σ sate \langle

Slide 9 / 14 Clean Space Days 2024 8/10/2024

Success story from flying satellites – reaction wheels

Example of hidden reaction wheel degradation trend

 Σ sate α

Failure prognostics on large constellations with selected use of Al SATE - Chiara Brighenti Slide 10 / 14 Clean Space Days 2024 8/10/2024

KPI measurement – simulated AOCS use case

Name	Meaning	Test outcome	Target
Precision positive condition	Among all CLUE alerts, how many are correct	98.5%	> 99%
Recall positive condition	Among all cases with off-nominal conditions how many are correctly identified by CLUE alert	98.2%	> 90%
Missed standard FDIR alerts wrt Al- FDIR correct alerts	Among all correct CLUE alerts how many are not detected by standard FDIR	82.1%	none
Early detection	Time interval between an alert by the CLUE system and a real component failure (excluding crash breaking events) or standard FDIR alert	2 weeks to 2 months	>10 hours
Fault Isolation accuracy	Among all CLUE alerts, how many are given with the correct failure mode information: mechanical (bearing) failure electronics failure, defective thermistor.	99.6 %	>99%
RUL estimate accuracy	Average accuracy of the prediction of a critical condition at alert set (excluding crash breaking events)	77%	>80%

 Σ sate α

Failure prognostics on large constellations with selected use of AI

SATE - Chiara Brighenti

Streamlined implementation path

Combining available data and domain knowledge towards service running in production constellation-wise

 $\Sigma SATE <$

Failure prognostics on large constellations with selected use of AI SATE - Chiara Brighenti Slide 12 / 14 Clean Space Days 2024 8/10/2024

Next steps

- **> Extensive validation** of the approach for large constellations in selected use cases
- **>** Development of support modules for **troubleshooting** and **configuration management**
- **>** Development of support modules for **flight dynamics tasks**
- **>** Deploy the system for **operational demonstrations**

Failure prognostics on large constellations with selected use of AI <u>SATE - Chiara Brig</u>henti

 Σ sate (

Slide 13 / 14 Clean Space Days 2024 8/10/2024

SATE Engineering passion!

Travelling from sea depths to outer space

with simulation and diagnostics since 1991

Chiara Brighenti Technical Director - Controls & Diagnostics <u>chiara.brighenti@sate-italy.com</u> +39-041-2757634 Santa Croce 664/A, 30135 Venice (ITALY)

> Slide 14 / 14 Clean Space Days 2024 8/10/2024

Failure prognostics on large constellations with selected use of AI SATE - Chiara Brighenti