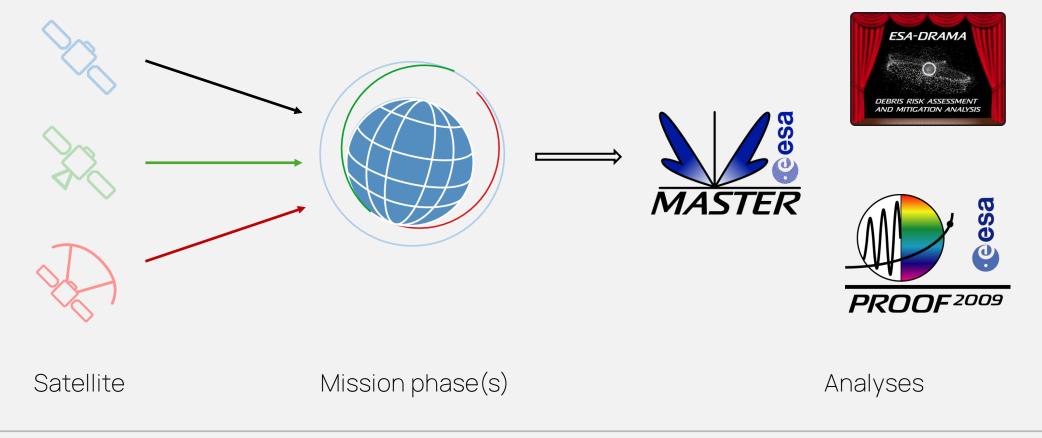
OKAPI ORBITS


Making NewSpace Safer Space Traffic Management

Introduction to the DMF-05 Activity

Christopher Kebschull SST for Spacecraft Operations Workshop May 2024

Debris Mitigation Facility Rethinking DRAMA

Goal: One software to perform all debris-related mission analyses from a single mission definition.

Debris Mitigation Facility Enabling complex analysis

Paradigm shift in analysis setup:

- **Mission-centric** instead of tool-specific definitions in DRAMA, MASTER, and PROOF
- Combined and shared inputs for multiple tools

Interaction between tools established

> CROC and CState are called, as part of workflows

Workflows allow to create complex processes: compliance verification

	Compliant ORAMA	Or Non-Company 	
Debris Mitigation F			
Space Debris Mitig	ation Guidelines Comp	liance Report	eesa
Mission: Sentinel 3	В		
The verification for the stated i	mission has been found to be non-co	mpliant. Non-compliance was detected in the following require	ments:
The verification has been perfo	ormed according to:		
• ISO	-	Non-Com	
Assessing the following require	ements from that standard:	DRA	
disposalOrbit		MMA E	
Detailed result Mission phase: Reent			
The following section provides	an overview of the mission phase		
Begin 2030-04-26T01:4	14:00.00Z		
End 2030-04-26T01:4 Type Drifting	I4:00.00Z		
Type Drifting			
Orbit type	Single averaged		
semimajor axis / km eccentricity / -	7186.84 0.0008525		
inclination / deg	98.6236		
RAAN / deg	184.113		
argument of perigee / deg mean anomaly / deg	315.469 44.58		
Satellite: Sentinel 3B			
Evomolo		alianaa ranart	
Example	e or a comp	oliance report	
	ľ		

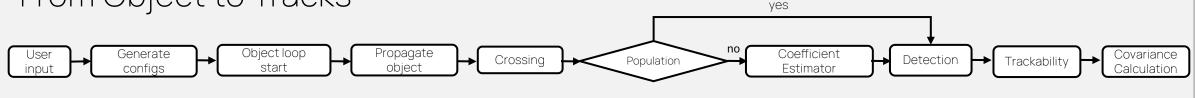
Debris Mitigation Facility New User Interface

ESA DM	1F																		5 X
+	6 🖬			PDF	Ð	8	Þ		sing: Sentin			<u>r.</u>	С				X	PROJECT	?
NEW	OPEN SAV	SAVE	AS Y	PDF	IMPORT ~	EXPORT ~	RUN	× CAN	ICEL RUN	▼ SI	HOW LOGS	REPLOT	RESET				CSTATE	SETTINGS	HELP
Senti	nel-3B																		×
	INPUT		OUTPUT			satellite													
Control	inputs			>	SPAC	CECRAFT PARA	METERS	3	BD MODEL		PROPUL	SION SYSTE	M DISPOSAL SYSTEM DEFINITIO	Ν					
Vission	definition			~											Model				~
SATELL	ITES			+ NEW											Name*:	Main Body			
1 :	Sentinel 3B																		
N	Mass: 1130 Drag area: 17.07	15													Primitive*:	Box			•
													/		Width*:	2.2			
AISSIO	N PHASES			+ NEW											m				
1	Dperational Begin: 15-04-201	8													Height*:	2.2			
E	Begin: 15-04-201 End: 15-04-2024														m				
2	Disposal Phase														Length*:	3.7			
E	Begin: 26-04-202 End: 26-04-2026	4													m				
															Flat*				
															Color:				
					Compo	onents							+ NEW 🕣 IMPOI	RT 🗲 EXPORT	Position X*:	0			
						1ain Body								+ 🗈 🗊	m				
						Left Solar	Arrow Mi	na							Position Y*:	0			
															m				
						Right Sola	ar Array V	Ving							Position Z*:	0			
															m				
Environ	ment definition			>											Rotation yaw*:	0			
Standar	ds definition			>											deg				
Fool spe	ecific definition			>															
Databas	ses			>															

Debris Mitigation Facility From Crossing to Tracking

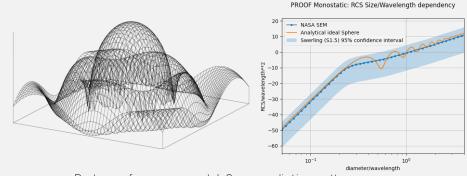
The objective of the activity is to integrate and extend ESA's PROOF capabilities into the DMF framework to support mission designers in the detectability and trackability guideline requirements verification.

- ✓ Preparation of functional integration of ESA's PROOF into the DMF user-interface framework;
- ✓ Extend the functionality of PROOF to assess if and how well one or multiple spacecraft can be catalogued*. Support in mission design in terms of trackability, but also allow calibration of break-up events and provide estimates on catalogue accuracies for DRAMA's ARES module;
- ✓ Extension of the detection model to account for complex spacecraft models.

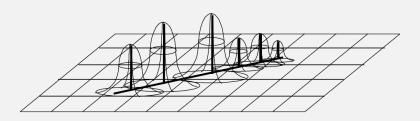

Debris Mitigation Facility New Use Cases in DMF-05

Four main use cases:

- 1. Object trackability analysis,
- 2. Population trackability analysis,
- 3. Ares preset generation,
- 4. Light pollution analysis.


Use case ID	UC-01
Summary	A user wants to determine the trackability of the designed space object
Users	Sensor operator; space mission designer
Use case ID	UC-02
Summary	A user wants to determine the trackability of a population of objects orbiting Earth
Users	Sensor operator
Use case ID	UC-03
Use case ID Summary	UC-03 A user wants to create a new space surveillance network pre-set
	A user wants to create a new space
Summary	A user wants to create a new space surveillance network pre-set
Summary Users	A user wants to create a new space surveillance network pre-set Sensor operator, space mission designer

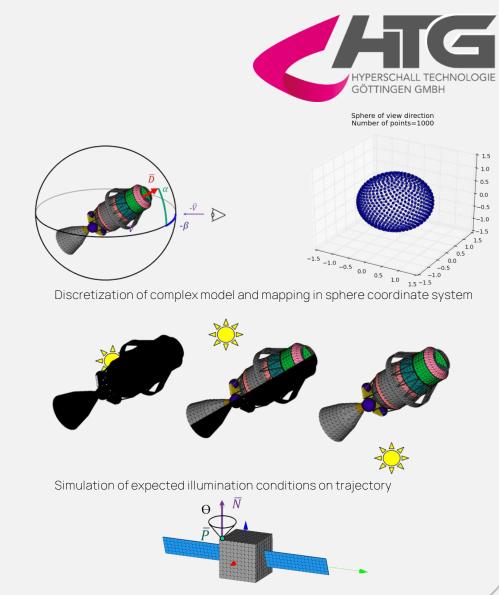
Debris Mitigation Facility From Object to Tracks



- Definition of object orbit and properties
- Definition of sensor network
- Complex radar, optical and laser performance models are used to determine detectability
- Detections are grouped into tracklets and used to calculate a covariance using orbit determination algorithms.
- An initial covariance is propagated for a user-specified duration using consider parameters that account for drag and SRP uncertainty.
- Statistics are also calculated:
 - Percentage of total observations and crossings for each object in population run modes.

Radar performance model: 2-way radiation pattern

Optical performance model: Object's signal over pixel


Debris Mitigation Facility Properties and detection databases

Coefficient Estimator

The main purpose of the detection database is to precompute illumination, radar, and reflector visibility and store them as detection coefficients for several view angles.

The goal is a simple interface to get attitude dependent detection properties for complex geometries in DMF:

- Radar equivalent area database
- Surface visibility (optical) and its reflection properties (diffuse and specular) database
- Retro-reflector database

Placement of retro-reflector position on complex 3D model

Debris Mitigation Facility Properties and detection databases

- The ARES run mode requires additional processing of the propagated covariance.
- For the radial, tangential, and normal components of the covariance matrix, a polynomial fitting takes place.
- Coefficients of the polynomials are determined using curve fit functionality.

 $\sigma_j = c_j \cdot 10^{a_j \cdot \Delta t}, j \in (U, W)$ $\sigma_V = c_V \cdot (b_V + \Delta t)^{a_V}$

Functions for the radial (U), along-track (V) and normal (W) uncertainties, ARES technical note.

Thanks for your attention!