THE GEANT₄-DNA PROJECT OVERVIEW & PHYSICS

Sébastien Incerti CNRS, Bordeaux, France http://geant4-dna.org

1119:010

representing the « Geant₄-DNA » collaboration

1ST GEANT4-DNA TUTORIAL

ESA/ESTEC, NOVEMBER 7TH, 2014

Morning agenda

09:00	Welcome	
	Einstein, European Space Research and Technology Centre (ESTEC)	09:00 - 09:10
	Geant4-DNA Overview & Physics	Dr. Sebastien INCERTI
	Einstein, European Space Research and Technology Centre (ESTEC)	09:10 - 09:30
	Geant4-DNA Chemistry	Mr. Mathieu KARAMITROS
10:00	Einstein, European Space Research and Technology Centre (ESTEC)	09:30 - 10:10
	Installation of Geant4 Virtual Machine	Sylvain MEYLAN
	Einstein, European Space Research and Technology Centre (ESTEC)	10:10 - 10:30
	Break	
	Einstein, European Space Research and Technology Centre (ESTEC)	10:30 - 11:00
11:00	Hands-on: dnaphysics	Dr. Sebastien INCERTI
	Einstein, European Space Research and Technology Centre (ESTEC)	11:00 - 11:30
	Geant4-DNA Geometries (from molecules to cells) & hands-on: wholeNuclearDNA	Dr. Carmen VILLAGRASA et al.
	Einstein, European Space Research and Technology Centre (ESTEC)	11:30 - 12:00
12:00	Lunch at ESA	
13:00		
	Einstein, European Space Research and Technology Centre (ESTEC)	12:00 - 13:30

Afternoon agenda

	Hands-on: chem1	Mr. Mathieu KARAMITROS
	Einstein, European Space Research and Technology Centre (ESTEC)	13:30 - 14:00
14:00	Hands-on: chem2	Mr. Sylvain MEYLAN
	Einstein, European Space Research and Technology Centre (ESTEC)	14:00 - 14:30
	Hands-on: chem3	Dr. Vaclav STEPAN
	Einstein, European Space Research and Technology Centre (ESTEC)	14:30 - 15:00
15:00	Hands-on: pdb4dna	Dr. Emmanuel DELAGE et al.
	Einstein, European Space Research and Technology Centre (ESTEC)	15:00 - 15:30
	Hands-on: microdosimetry	Dr. Sebastien INCERTI
	Einstein, European Space Research and Technology Centre (ESTEC)	15:30 - 16:00
16:00	Discussion	
	Einstein, European Space Research and Technology Centre (ESTEC)	16:00 - 16:30

Contents

- Context of the Geant4-DNA project
- **PHYSICAL** stage
 - Overview of models
 - Recent verification & validation activities
- Where to find more information?

1) CONTEXT

Modelling biological effects of ionising radiation remains a major scientific challenge

http://rcwww.kek.jp/norm/index-e.html

THE LANCET Diagnosis

Home | Journals | Specialties | Clinical | Global Health | Audio | Conferences | Information for | H

GO

Space exploration

Vlars

The Lancet, Early Online Publication, 7 June 2012 doi:10.1016/S0140-6736(12)60815-0 (?) Cite or Link Using DOI

Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study

Dr <u>Mark S Pearce</u> PhD & 🗺 🔄 <u>Jane A Salotti</u> PhD #, <u>Mark P Little</u> PhD 5, <u>Kieran McHuah</u> FRCR 4, <u>Choonsik Lee</u> PhD 5, <u>Kwang Pyo</u> Kim PhD *, <u>Nicola L Howe</u> MS *, <u>Scelle M Bonckers</u> PhD 5 (<u>Preetha Rajaraman</u> PhD 5, <u>Alan W Craft</u> MD b, <u>Louise Parker</u> PhD 8, <u>Amy Berrington de González DPhD 11</u> 5

Summary

Background

Although CT scans are very useful clinically, potential cancer risks exist from associated ionising radiation, in particular for children who are more radiosensitive than adults. We aimed to assess the excess risk of leukaemia and brain tumours after CT rans in a cohort of children and young adults.

> cans are very a full clinically, potential and are more radio sensitive than adults. We alway our of eligiblical and rouse adults.

 « A MAJOR CHALLENGE LIES IN PROVIDING A SOUND MECHANISTIC UNDERSTANDING OF LOW-DOSE RADIATION CARCINOGENESIS »
 L. MULLENDERS *ET AL*.
 ASSESSING CANCER RISKS OF LOW-DOSE RADIATION
 NATURE REVIEWS CANCER (2009)

Space missions

The Monte Carlo appraoch

- Can « reproduce » with accuracy the stochastic nature of particle-matter interactions
- Many Monte Carlo codes are already available today in radiobiology for the simulation of track structures at the molecular scale in biological medium
 - E.g. PARTRAC, TRIOL, PHITS, KURBUC, NOREC...
 - Include physics & physico-chemistry processes, detailed geometrical descriptions of biological targets down to the DNA size, DNA and chromosome damage simulation and even repair mechanisms (PARTRAC)...
- Usually designed for very specific applications
- Not always easily accessible
 - Is it possible to access the source code ?
 - Are they adapted to recent OSs ?
 - Are they extendable by the user?

« TO EXPAND ACCESSIBILITY AND AVOID 'REINVENTING THE WHEEL', TRACK STRUCTURE CODES SHOULD BE MADE AVAILABLE TO ALL USERS VIA THE INTERNET FROM A CENTRAL DATA BANK» H. NIKJOO, IJRB 73, 355 (1998)

Geant₄ for radiobiology

- Can we try to extend Geant4 to model biological effects of radiation ?
- Limitations prevent its usage for the modelling of biological effects of ionising radiation at the sub-cellular & DNA scale
 - Condensed-history approach
 - No step-by-step transport on small distances, a key requirement for micro/nano-dosimetry
 - Low-energy limit applicability of EM physics models is limited
 - Livermore Low Energy EM models can technically go down to 10 eV but accuracy limited
 - 100 eV for Penelope 2008 Low Energy EM models
 - No description of target molecular properties
 - Liquid water, DNA nucleotides, other
 - Only physical particle-matter interactions
 - At the cellular level, physical interactions are **NOT** the dominant processes for DNA damage at low LET...

The Geant₄-DNA project

Main objective

Extend the general purpose Geant4 Monte Carlo toolkit for the simulation of interactions of radiation with biological systems at the cellular and DNA level in order to predict early DNA damage in the context of manned space exploration missions (« bottom-up » approach).

Designed to be developed and delivered in a free software spirit under Geant4 license, easy to upgrade and improve.

Evolution

- **2001:** Initiated in 2001 by Dr Petteri Nieminen at the European Space Agency/ESTEC
- 2007: First prototypes of physics models added to Geant4
- Since 2008: Development coordinated by CNRS in Bordeaux, France
- **December 2014:** Chemistry stage extension ready for end users

The Geant₄-DNA project

• The code is a full independent sub-category of the electromagnetic physics category of Geant4

\$G4INSTALL/source/processes/electromagnetic/dna

- An interdisciplinary activity of the Geant4 « low energy electromagnetic physics » working group
- Supported by several funding agencies
 ESA (AO6041, AO 7146), ANR, INSERM, IRSN...
- Integration in Geant4 enables use from inside GATE (2014), TOPAS

How can Geant4-DNA model early DNA damage ?

2) PHYSICAL STAGE

2) PHYSICAL STAGE

Overview

Physics models available in Geant₄ 10.0Po₃

- Geant₄-DNA physics models are applicable to liquid water
 - Main component of biological matter
- They can reach the very low energy domain down to electron thermalization
 - Compatible with molecular description of interactions (5 excitation & ionisation levels of the water molecule)
 - Sub-excitation electrons (below ~9 eV) can undergo vibrational excitation, attachment and elastic scattering
- Purely discrete
 - Simulate all elementary interactions on an event-by-event basis (nanometer scale geometries)
 - No condensed history approximation
- Models can be purely analytical and/or use interpolated data tables
 - For eg. computation of integral cross sections
- Can be run in MultiThreading mode from Geant₄ 10 since December 2013
- They use the same software design as all electromagnetic models available in Geant4 (« standard » and « low energy » EM models and processes)
 - Allows the combination & addition of models and processes
 - Allows combination of discrete/condensed models

Overview of physics models for liquid water

Protons & H

- Excitation (*)
 - Miller & Green speed scaling of e⁻ excitation at low energies and Born and Bethe theories above 500 keV
- Ionisation
 - Rudd semi-empirical approach by Dingfelder *et al.* and Born and Bethe theories & dielectric formalism above 500 keV (relativistic + Fermi density)
- Charge change (*)
 - Analytical parametrizations by Dingfelder *et al.*
- He°, He⁺, He²⁺
 - Excitation (*) and ionisation
 - Speed and effective charge scaling from protons by Dingfelder *et al*.
 - Charge change (*)
 - Semi-empirical models from Dingfelder et al.
- Li, Be, B, C, N, O, Si, Fe
 - Ionisation
 - Speed scaling and global effective charge by Booth and Grant

- from EM « standard » and « low energy »
- 15

Overview

• Default: « Livermore »

Electrons

- Elastic scattering
 - Screened Rutherford and Brenner-Zaider below 200 eV
 - Partial wave framework model, 3 contributions to the interaction potential
- Ionisation
 - 5 levels for H_2O
 - Dielectric formalism & FBA using Heller optical data up to 1 MeV, and low energy corrections
- Excitation (*)
 - 5 levels for H_2O
 - Dielectric formalism & FBA using Heller optical data and semi-empirical low energy corrections
- Vibrational excitation (*)
 - Michaud et al. xs measurements in amorphous ice
 - Factor 2 to account for phase effect
- Dissociative attachment (*)
 - Melton *et al*. xs measurements

(*) only available in Geant4-DNA

See Med. Phys. 37 (2010) 4692-4708 (link) and Appl. Radiat. Isot. 69 (2011) 220-226 (link)

Overview

Eg. : electron cross sections

Verification and validation energy (eV)

ranges, stopping powers

10₃ See

See Med. Phys. 37 (2010) 4692-4708 (int.) and NIMB 269 (2011) 2307-2311 (int.)

17

Electron elastic scattering cross section

Based on the theoretical work of C. Champion *et al*. in the partial wave framework and with a spherical potential includes three distinct terms: a **static** contribution and two fine correction terms corresponding to the **correlation-polarization** and the **exchange** interactions

Electron ionisation

Electron stopping power

20

Electron range, projected range and penetration

- Obtained with the partial wave elastic scattering model
- Compared to ICRU recommendations and to penetration MC calculations by Meesungnoen *et al*. (including a 2 factor on elastic and vib. excitation cross sections measured in ice)

Proton & Hydrogen ionisation

Proton and Hydrogen charge exchange

Proton stopping cross section in liquid water

- Contributions of ionisation (p, H), excitation (p) and charge change
- Comparison to recommendations (ICRU, HRMP) for liquid and vapour water

Helium ionisation

Helium charge exchange

Helium stopping cross section

- Contributions of **3 charged states** of Helium
- Comparison to recommendations (ICRU) for liquid and vapour water

26

Overview

http://geant4-dna.org in Physics...Processes

in Physics...Processes

1) Electrons

Electron interactions

Interaction	Process class	Model class	Min. energy	Max. energy	Kill	Туре
elastic scattering	G4DNAElastic	G4DNAChampionElasticModel	0 eV	1 MeV	7.4 eV	interpolated
elastic scattering	G4DNAElastic	G4DNAScreenedRutherfordElasticModel (**)	0 eV	1 MeV	9 eV (*)	analytical
electronic excitation	G4DNAExcitation	G4DNABornExcitationModel	9 eV	1 MeV	-	interpolated
ionisation	G4DNAlonisation	G4DNABornIonisationModel	11 eV	1 MeV	-	interpolated
vibrational excitation	G4DNAVibExcitation	G4DNASancheExcitationModel	2 eV (*)	100 eV	-	intepolated
attachment	G4DNAAttachment	G4DNAMeltonAttachmentModel	4 eV	13 eV	-	interpolated

(*) indicates that the low energy limit applicability of the model can be **further decreased** in an energy regime where it has not been validated, see **FAQ** section.

(**) the G4DNAScreenRutherfordElasticModel is an **alternative** model for the simulation of elastic scattering. The G4DNAChampionElasticModel is the default model used in the G4EmDNAPhysics constructor.

Overview

2) Protons and hydrogen

Proton interactions

Interaction	Process class	Model class	Min. energy	Max. energy	кш	Туре
electronic excitation	G4DNAExcitation	G4DNAMillerGreenExcitationModel	10 eV	500 keV	-	analytical
electronic excitation	G4DNAExcitation	G4DNABornExcitationModel	500 keV	100 MeV	-	interpolated
ionisation	G4DNAlonisation	G4DNARuddIonisationModel	0 eV	500 keV	100 eV	interpolated
ionisation	G4DNAlonisation	G4DNABornIonisationModel	500 keV	100 MeV	-	interpolated
electron capture	G4DNAChargeDecrease	G4DNADingfelderChargeDecreaseModel	100 eV	100 MeV	-	analytical

Hydrogen interactions

Interaction	Process class	Model class	Min. energy	Max. energy	Kill	Туре
electronic excitation	G4DNAExcitation	G4DNAMillerGreenExcitationModel	10 eV	500 keV	-	analytical
ionisation	G4DNAlonisation	G4DNARuddIonisationModel	0 keV	100 MeV	100 eV	interpolated
charge increase	G4DNAChargeIncrease	G4DNADingfelderChargeIncreaseModel	100 eV	100 MeV	-	analytical

3) Helium and charge states

Neutral Helium ionised twice (« alpha ») interactions

Interaction	Process class	Model class	Min. energy	Max. energy	Kill	Туре
electronic excitation	G4DNAExcitation	G4DNAMillerGreenExcitationModel	1 keV	400 MeV	-	analytical
ionisation	G4DNAlonisation	G4DNARuddIonisationModel	0 keV	400 MeV	1 keV	interpolated
charge decrease	G4DNAChargeDecrease	G4DNADingfelderChargeDecreaseModel	1 keV	400 MeV	-	analytical

Neutral Helium ionised once (« alpha+ ») interactions

Interaction	Process class	Model class	Min. energy	Max. energy	кш	Туре
electronic excitation	G4DNAExcitation	G4DNAMillerGreenExcitationModel	1 keV	400 MeV	-	analytical
ionisation	G4DNAlonisation	G4DNARuddIonisationModel	0 keV	400 MeV	1 keV	interpolated
charge decrease	G4DNAChargeDecrease	G4DNADingfelderChargeDecreaseModel	1 keV	400 MeV	-	analytical
charge increase	G4DNAChargeIncrease	G4DNADingfelderChargeIncreaseModel	1 keV	400 MeV	-	analytical

· Neutral Helium (« helium ») interactions

Interaction	Process class	Model class	Min. energy	Max. energy	Kill	Туре
electronic excitation	G4DNAExcitation	G4DNAMillerGreenExcitationModel	1 keV	400 MeV	-	analytical
ionisation	G4DNAlonisation	G4DNARuddIonisationModel	0 keV	400 MeV	1 keV	interpolated
charge increase	G4DNAChargeIncrease	G4DNADingfelderChargeIncreaseModel	1 keV	400 MeV	-	analytical

4) Other particles

. Li, Be, B, C, N, O, Si, Fe interactions

Interaction	Process class	Model class	Min. energy	Max. energy	кш	Туре
ionisation	G4DNAlonisation	G4DNARuddIonisationExtendedModel	0.5 MeV/u	1e6 MeV/u	0.5 MeV/u	interpolated

Gamma interactions

Gamma interactions are based on the Geant4 Livermore models and they are included by default in the **G4EmDNAPhysics constructor**. Please see more on <u>Physics List</u>.

Physics constructor

- For any application based on the Geant₄-DNA extension, we recommend the implementation of a Geant₄-DNA Physics list based on the G₄EmDNAPhysics Physics constructor, which is regularly tested.
- The source code of this G₄EmDNAPhysics Physics contructor may be found in the \$G₄INSTALL/source/physics_lists/constructors/ electromagnetic directory.
- This is described in the « dnaphysics » extended example
 - see hands-ons

Multiscale combination of EM processes

- In Geant4-DNA and Geant4 electromagnetic (EM) categories
 - A physical interaction is described by a process class
 - Eg. G4DNAlonisation
 - A process class uses a model class in order to calculate the interaction cross section and final state, according to a selected theoretical / semi-empirical / empirical model
 - Eg. G4DNABornIonisationModel
- Thanks to this unified software design, users can easily combine Geant₄-DNA processes and models with
 - Geant₄ photon processes and models
 - Photoelectric effect, Compton sc., Rayleigh sc., pair production
 - Livermore (EPDL97) included by default
 - Geant4 alternative EM processes and models for charged particles
 - Ionisation, bremmstrahlung, elastic scattering, etc...
 - Electrons, positrons, photons, ions, etc...
 - Geant4 atomic deexcitation (fluorescence + Auger emission)
 - EADL₉₇

Mixed physics lists in space regions: the « microdosimetry » example

/gps/particle ion /gps/ion 6 12 6 /gps/energy 240 MeV Courtesy of V. Stepan (CENBG)

Overview

See NIMB 273 (2012) 95-97 (ink) Prog. Nucl. Sci. Tec. 2 (2011) 898-903 (ink)

2) PHYSICAL STAGE

Verification

Dose Point Kernel simulations

- Accurate test of electron transport in small scale geometries
- We compared Geant₄-DNA electron Dose Point Kernels (DPK) in liquid water with several MC codes
 - CPA100
 - EGSnrc
 - FLUKA 2011.2.15
 - MCNPX 2.7.0
 - PENELOPE 2006

- 4 electron energies : 10 keV, 30 keV, 50 keV and 100 keV and 120 bins (r/r_{CSDA})
- Geant₄-DNA partial wave elastic scattering model
- Kolmogorov-Smirnov test used to compare Geant₄-DNA with the other Monte
 Carlo codes

See Appl. Radiat. Isot. 83 (2014) 137-141 (ink)

DPK simulations in liquid water

- Geant4-DNA is compatible with EGSnrc, PENELOPE and FLUKA
- But not compatible with CPA100 (30 keV and 50 keV) and with MCNPX* (all energies)
- *
- V2.7.0
- F8 tally
- EFAC=0.917
- transport cutoff of 1 keV
- ITS option
- ESTEP = 10 or 100

S-values simulations in liquid water

- Alternative accurate test of electron transport in small scale geometries
- We compared Geant₄-DNA electron S-values in liquid water with several MC codes
 - CPA100
 - EGSnrc
 - EPOTRAN/CELLDOSE
 - MC4V
 - MCNP
 - PENELOPE
- Electron energies
 - monoenergetic case in a sphere of liquid water
 - 5 iodine isotopes: 131, 132, 133, 134, 135 in context of thyroid targeted immunotherapy
 - Two concentric spheres of liquid water separated by 10 microns :

inner sphere with varying radius (colloid) and outer sphere with 10 micron thickness (follicular cell)

$$\overline{D}(r_{\mathrm{T}} \leftarrow r_{\mathrm{S}}) = \widetilde{A}_{\mathrm{r}_{\mathrm{S}}} S(r_{\mathrm{T}} \leftarrow r_{\mathrm{S}}),$$

See NIMB 319 (2014) 87-94 (init)

Verification

S-values simulations in liquid water

lodine : colloid and follicular

Mean energy deposition of protons

eccentricity

Mean energy deposit per event for 1 MeV proton tracks going through spherical volume of water with 30 nm of diameter. The source was placed at 100 nm from the target. The full line represents the energy deposit calculated using the LET values published in the ICRU report 49

Appl. Radiat. Isot. 69 (2011) 220-226

Radial doses

- Investigation of Geant4-DNA performance for radial dose distribution around ion tracks
 - Protons, alphas, C, O, Fe
 - MeV–GeV range
- Comparison to published data
 - Analytical calculations
 - Monte Carlo simulations
 - Experimental data in tissue equivalent gas

Verification

Radial doses

- General good agreement of dose profiles with a variety of literature data
- Selection of results for 1 MeV protons
 - Dose profile
 - Geometrically restricted LET
 - Individual process contribution to absorbed dose

10⁶

10⁵

10⁴

 10^{3}

10²

10¹

10

0

Proton 1 MeV

10

20

Dose (Gy)

Dose profile

0

30

Radius (nm)

MC (MC4L [15])

40

50

60

MC (OREC liquid [17]) MC (Uehara et al. [18]) MC (Geant4-DNA)

Calc. (Cucinotta et al. [19])

Exp. (Wingate and Baum [20])

Energy deposition in nanometer size targets

- We have recently evaluated performances of Geant4-DNA physics models in very small size targets
- Simulate frequencies of energy deposition in cylindrical targets of biological interest : 2 nm x 5 nm
 (DNA bases), 10 nm x 5 nm (nucleosome), 25 nm x 25 nm (chromatine fiber)
- Comparison with literature simulations (MOCAX series of MC codes)
- Geometry implemented from a voxellized phantom containing randomly oriented cylindrical targets
- Two shooting methods : centred or random

Frequency of energy deposition: comparison with MOCAX series

3) PHYSICO-CHEMICAL & CHEMICAL STAGE

See talks and hands-ons by Mathieu, Sylvain and Vaclav

4) GEOMETRICAL MODELS

See talks and hands-ons by Carmen, Emmanuel, Yann

5) WHERE TO FIND MORE INFORMATION ?

Geant₄-DNA website

A unique web site for Geant4-DNA: http://geant4-dna.org

Welcome to the Internet page of the Geant4-DNA project.

The <u>Geant4</u> Monte Carlo simulation toolkit is being extended with processes for the **modeling of early biological** damages induced by ionising radiation at the DNA scale. Such developments are on-going in the framework of the Geant4-DNA project, originally initiated by the <u>European Space Agency/ESTEC</u>.

On-going developments include

- Physics processes in liquid water and other biological materials
- Physico-chemistry and chemistry processes for water radiolysis
- Molecular geometries
- Quantification of damage (such as single-strand, doublestrand breaks, ...)

Recent posts

Check-out our new movie in the **Chemistry** section !

The last Geant4 release (10.0+P01) is available for download, see our **Software** section.

A new advanced example, dnageometry, is available, see our Examples & tutorials section.

PhD theses by the Geant4-DNA collaboration are listed in the **Publications** section.

© The Geant4-DNA collaboration - Contact us

Geant₄-DNA examples included in Geant₄

Example code name Purpose		Location	Availability
dnaphysics	• Usage of Geant4-DNA Physics processes • variable density	\$G4INSTALL/examples/extended/medical/ dna	from Geant4 9.5 BETA
microdosimetry	Combination of Standard EM or Low Energy EM processes with Geant4- DNA Physics processes	\$G4INSTALL/examples/extended/medical/ dna	from Geant4 9.5 BETA
chem1, chem2, chem3	Usage of Geant4-DNA chemistry	\$G4INSTALL/examples/extended/medical/ dna	Geant4 10.1
wholeNuclearDNA	Cell nucleus	\$G4INSTALL/examples/ <mark>extended/medical/</mark> dna	from Geant4 10.0
PDB4DNA	Interface to PDB database	\$G4INSTALL/examples/extended/medical/ dna	Geant4 10.1
microbeam	3D cellular phantom	\$G4INSTALL/examples/advanced	From 2009
TestEm12	DPK	\$G4INSTALL/examples/extended	from Geant4 9.5 BETA
(TestEm2)	Usage of Physics constructors	\$G4INSTALL/examples/extended	from Geant4 9.4
(TestEm14)	Extraction of cross sections	\$G4INSTALL/examples/extended	from Geant 49.4

PERSPECTIVES

Perspectives

- PHYSICS
 - Inclusion of cross section models for electrons and ions
 - Liquid water & DNA material & gas for nanodosimeters
 - BioQuart project (Dr Hans Rabus @ PTB see Carmen's talk), Ioannina U. team, LAPLACE team
- PHYSICO-CHEMISTRY/CHEMISTRY
 - Addition of scavenger species and reactions
 - Combination of geometry & chemistry composite material approach
- **BIOLOGY**
 - Prediction of direct and non-direct DNA simple & complex damages

in plasmids and realistic cells, time evolution

- Verification (with other codes) and validation (with experimental data)

All this takes time to implement and publish before the software

is publicly released in Geant4... thank you for your patience

You are kindly invited to contact us if you are interested in contributing to Geant₄-DNA

Thank you for your attentionand a special thank you to

Our youngest developers

Morgane Dos Santos (CNRS/IMNC, France) Anton Ivantchenko (G4AI, UK) Mathieu Karamitros (CNRS/CENBG, France) Ioanna Kyriakou (Ioannina University, Greece) Alfonso Mantero (Italy) Sylvain Meylan (IRSN, France) Yann Perrot (CNRS/LPC Clermont, France) Trung Q. Pham (CNRS/LPC Clermont, France) Vaclav Stepan (CNRS/CENBG, France) Hoang N. Tran (Ton Duc Thang U., Vietnam)

Theory & MC experts

Michael Dingfelder (ECU, USA) Dimitris Emfietzoglou (Ioannina U., Greece) Werner Friedland (Helmholtz Z., Germany)

