Overview of the Geant4-DNA chemistry

Mathieu Karamitros 1st Geant4-DNA tutorial ESA/ESTEC – 07/11/2014

Hirayama <u>et al, 2009</u>

Contribution of indirect effects

Survival vs Dose with different DMSO

Contribution of indirect effects VS LET

concentrations

FIG. 1. X-ray survival of V79 cells in the presence of DMSO. Error bars represent the standard deviations (n = 2-3). These curves were fitted by the single-hit multitarget equation as described in the Materials and Methods.

Methods.

by the single-mit multitarget equation as described in the Materials and

FIG. 4. LET dependence of the contribution of indirect action in cell killing. The error bars are standard errors for a protectable fraction calculated from a regression line. Data from Ito *et al.* for HL-60 cells (6) are plotted in the figure.

are plotted in the figure.

culated from a regression line. Data from Ito et al. for HL-60 cells (6)

Why using Geant₄?

Geant4's features

- Rather reliable toolkit, system testing, constant evolution
- Multiple physics models available
- Geometry and visualization capabilities
- Modern architecture

Benefits

- Software coherence &
 Unified simulation platform
 - No need to separate the different stages (physics, chemistry...)
 - Only one simulation setup needed
- Modelling compatible with Geant4's ...

t=10⁻¹⁵s t=10⁻¹²s **Physico-chemical stage**

• During this stage, water molecules

- Dissociate if ionized
- Relax or dissociate if excited

Electronic state of water molecule	Dissociation channels	Fraction (%)	nels(
All ionization states	H ₃ O⁺+●OH	100	nan
Excitation state A1B1: (1b1) → (4a1/3s)	•OH + H• Η ₂ O + ΔΕ	65 35	ationC
Excitation state B1A1: (3a1) → (4a1/3s)	$H_{3}O^{+} + \bullet OH + e_{aq}^{-}$ $\bullet OH + \bullet OH + H_{2}$ $H_{2}O + \Delta E$	55 15 30	tDissoci
Excitation state: Rydberg, diffusion bands	$H_3O^+ + \bullet OH + e_{aq}^-$ $H_2O + \Delta E$	50 50	onstruc

- Dissociative attachment: $H_2O^- \rightarrow H_2 + OH^- + \bullet OH$
- Situtation at 1 picosecond? Are the dissociation channels dependent on the LET?
- Can be tuned by the user

Well adapted for few molecules and heterogenously distributed Assumption : molecules are homogenously distributed into one voxel. More adapted for large N ₆

t=10⁻¹⁵s t=10⁻¹²s Chemical stage: model

- Diffusion-limited reactions
 no reversible reactions
- Step-by-step approach combining dynamical time steps and Brownian bridge

 $t = 10^{-6}s$

- Method splits into two stages:
 - Decision stage: which reaction will happen? When?
 - Action stage:
 - Diffusion
 - Can the selected reactants can indeed react?

Brownian motion: the Langevin equation

• A particle in a fluid is slowed down by a friction force:

$$\vec{m} \vec{\mathbf{r}} = -\gamma \dot{\vec{\mathbf{r}}} + \vec{\mathbf{F}}_{ext} (\vec{\mathbf{r}})$$
Friction force

 If its mass is weak → the particle undergoes multiple collisions with the medium :

$$\vec{m}\vec{\mathbf{r}} = -\gamma \dot{\vec{r}} + \vec{F}_{ext}(\vec{r}) + \vec{\psi}(t)$$
Random force

■ This is the so-called Langevin equation → stochastic

The Langevin equation

$$\ddot{\vec{\mathbf{r}}} = -\frac{\gamma}{m}\dot{\vec{\mathbf{r}}} + \frac{\overrightarrow{\mathbf{F}_{ext}}(\vec{\mathbf{r}})}{m} + \frac{\overrightarrow{\psi}(t)}{m}$$

$$\vec{\mathbf{r}} = -\alpha \dot{\vec{\mathbf{r}}} + \frac{\vec{\mathbf{F}}_{ext}(\vec{\mathbf{r}})}{m} + \vec{\mathbf{\Gamma}}(t)$$
Langevin force

Hypothesis:

 $\left\langle \vec{\Gamma}(t) \right\rangle = \vec{0}$

 $\left\langle \vec{\Gamma}(t_1) \cdot \vec{\Gamma}(t_2) \right\rangle = q \cdot \delta(t_1 - t_2)$

Towards the Smoluchowski-Debye equation

• Langevin Equation
$$\vec{\mathbf{r}} = -\alpha \dot{\vec{\mathbf{r}}} + \frac{\vec{\mathbf{F}}_{ext}(\vec{\mathbf{r}})}{m} + \vec{\Gamma}(t)$$

Hypothesis

Very weak mass + thermal equilibrium

$$\boldsymbol{\alpha} \dot{\vec{\mathbf{r}}} = \frac{\overrightarrow{\mathbf{F}_{ext}}(\vec{\mathbf{r}})}{m} + \overrightarrow{\mathbf{\Gamma}(t)}$$

Smoluchowski-Debye Equation

- Equation $\alpha \dot{\vec{\mathbf{r}}} = \frac{\overrightarrow{\mathbf{F}_{ext}}(\vec{\mathbf{r}})}{m} + \overrightarrow{\mathbf{\Gamma}}(t)$
- Random differential equation
 $\vec{r}
 is described by a density probability function p$

$$p(\vec{\mathbf{r}},t|\vec{\mathbf{r}}_{0},t_{0}) = \frac{4\pi \cdot \vec{\mathbf{r}}^{2}}{\left(4\pi D(t-t_{0})\right)^{\frac{3}{2}}} \exp\left(-\frac{\left(\vec{\mathbf{r}}-\vec{\mathbf{r}}_{0}\right)^{2}}{4D(t-t_{0})}\right)$$

→ The simulation may be taken as a succession of time steps Δt wher $\Delta t = t - t_o$

où D =
$$\frac{q^2}{2\gamma^2}$$
 with $\left\langle \vec{\Gamma}(t_1) \cdot \vec{\Gamma}(t_2) \right\rangle = q \cdot \delta(t_1 - t_2)$

Illustration in Geant4-DNA

Diffusion-controlled reactions in Geant4-DNA, JComp Phys (2014), 274, 841-882

Standard transport in Geant₄ VS Brownian motion

STANDARD TRANSPORT OF GEANT4 BROWNIAN MOTION

Position and velocity	Deterministic (between two interactions points)	Stochastic
Path-volume Intersection	« Exact » intersection computable	Can be expressed in terms of probability
Equation of motion	Newton	Fokker-Planck (stochastic equation of motion)

The step -by-step method: principle

 $t = 10^{-6}s$

Etape chimique

 $t = 10^{-12} s$

Step-by-step method

- Interaction
 Can the molecules react ?
 Criterium: separation distance
- 2. Take one **diffusion** step for all molécules, return to **1**)

The step –by-step method: reaction

Reaction calculated after each step Δt ...

Step-by-step: method: How to choose Δt ?

- Two solutions have been implémented in Geant4-DNA
- Select an arbitrary time step
 - Example : A la **PARTRAC***

Step Δt are predefined and evolved along the simulation

Time interval (s)	$\Delta t \ (ps)$
Until 1.0×10^{-11}	0.1
1.0×10^{-11} - 1.0×10^{-10}	1
1.0×10^{-10} – 1.0×10^{-9}	3
1.0×10^{-9} - 1.0×10^{-8}	10
Above 1.0×10^{-8}	100

*Kreipl et al, Radiat Environ Biophys, **48**, 11-20 (2009)

Compute it in respect to the next reaction*
 Explanation ...

*Michalik et al., Radiation Research **149**, 224-236 (1998)

Multiple smaller and smaller steps

Multiple smaller and smaller steps

Multiple smaller and smaller steps
Solution: impose a minimum time step

- Multiple smaller and smaller steps
- Solution: impose a minimum time step
- Problem : may miss reactions

- Multiple smaller and smaller steps
- Solution: impose a minimum time step
- Problem : may miss reactions

- Solution: compute a probability of encounter during a time step
 - Brownian bridge

Speed up the step by step method ...

Reaction → search for the closest neighbor

Brute-force method

Compare all distances between N reactants

- Number of elementary operations ≈ N²/2
- Drawback: CPU
- Solution : k-d tree

t=10⁻¹⁵s t=10⁻¹²s Chemical stage: parameters

Snecies	Diffusion coefficient D	
Species	(10 ⁻⁹ m ² s ⁻¹)	S()
H ₃ O+	9.0	ule
H●	7.0	e C
OH-	5.0	Mo
e ⁻ aq	4.9	uct
H ₂	4.8	stri
●ОН	2.8	Ő
H_2O_2	2.3	In C

We followed the set of parameters published by the authors of the PARTRAC software (Kreipl et al., REB 2009). However, these parameters can be modified by the user.

Reaction	Reaction rate (10 ¹⁰ M ⁻¹ S ⁻¹)	
$H_3O^+ + OH^- \rightarrow 2 H_2O$	14.3	\bigcirc
•OH + $e_{aq} \rightarrow OH^{-}$	2.95	ible
$H \bullet + e_{aq}^{-} + H_2 O \rightarrow OH^{-} + H_2$	2.65	tionTa
$H_3O^+ + e^{aq} \rightarrow H^{\bullet} + H_2O$	2.11	eac
$H \bullet + \bullet OH \rightarrow H_2O$	1.44	ctR
$H_2O_2 + e_{aq}^- \rightarrow OH^- + \bullet OH$	1.41	Istru
$H^{\bullet} + H^{\bullet} \to H_{2}$	1.20	Co
$e_{aq}^{-} + e_{aq}^{-} + 2 \underset{H_2}{H_2} O \rightarrow 2 OH^{-} +$	0.50	ID
$\bullet OH + \bullet OH \rightarrow H_2O_2$	0.44	

Kreipl et al, 2009

 $t = 10^{-6}s$

SIMULATION SETUP

- Protons in 5 µm finite cube of liquid water
- When a particle leaves the cube, it is taken out from the simulation

Secondaries

Situation at 1 picosecond

Situation at 1 microsecond

Radiochemical yields VS LET

•OH radicals

Solvated e-

➔ General trend reproduced

J Comp Phys (2014), 274, 841-882

DNA chemistry limitations

Usage

- Add reactions → data needed
- Prototype
 → Bad interface, bugs etc ...
 → Don't hesitate to contact us

Models

- Particle-continuum representation
 - \rightarrow CPU and memory consuming
 - \rightarrow Run on a cluster
- Diffusion-controlled reactions

Indirect effects

Ongoing developments

Thank you for coming

Questions?

Diffusion-controlled reactions in Geant4-DNA, J Comp Phys (2014), 274, 841-882

http://geant4-dna.org