Leveraging Standardized Satellite Architecture For Thermal Analysis

European Space Thermal Engineering Workshop 2024

Adrien Fève – Senior Thermal Engineer Imane Karmoudi – Thermal Analyst

2024.10.09

Summary

- **1. Introduction**
- **2. Method**
- **3. Modeling Accuracy**
- **4. What's Next ?**

What are we doing at Loft Orbital ?

Simplicity

Our hardware and software abstraction layers, the Hub and Cockpit, remove the complexity of space missions.

Speed to orbit

We have an inventory of pre-assembled satellite platforms and pre-booked launches, so that we're ready when you are.

Reliability

We leverage commodity satellite buses with the proven heritage of over 600 copies on-orbit.

How do we achieve this hardware-wise?

Our physical missions business cases

Rideshare

Fly hardware on an upcoming satellite.

Dedicated

Fly a full satellite for your mission.

Constellation

Fly a constellation with constant coverage and high revisit rates.

Objectives

Surrogate Model: Leverage our Standardized Satellite Architecture For Thermal Analysis

- Leveraging our standardized thermal architecture
	- Push thermal analysis upfront
	- Better early phase thermal assessments
	- Enhance accessibility of thermal analysis
		- Reduce risks
- Empower everyone within the company to perform thermal analysis: Mechanical, Electrical, Systems, Operation, Sales Engineers etc..

Make thermal analysis simple, fast and reliable for everyone at Loft

Method

Workflow diagram of the process

How can we achieve our goal?

Build a surrogate model of the generic platform

Method

Detailed thermal model of the spacecraft bus and PAM

Method

User Interface of the final tool (fancy mockup..)

Method

Step 1: Computations* & Parameters Variation

Batch A: 108 cases

Parameters studied:

- **Floor, Shelf and Mezzanine thermal zones orbit average dissipations**
- **Aging**
- **Season**

Batch B: 216 cases

Parameters studied:

• **Altitude**

**The computations were performed using the Systema-Thermica software*

Method

Step 1: Computations* & Parameters Variation

• Modeled by single node on each thermal zone

**The computations were performed using the Systema-Thermica software*

Method

Step 2: Data Analysis & Trends Identification

Our analysis is conducted by evaluating the effect of multiple parameters on the average temperature of a set of thermal zones and the total spacecraft heating budget over a complete orbit.

- Mezzanine
- Shelf
- Top Floor
- Radiators
- Battery
- Solar Arrays

Dissipation Effect

Aging Effect

Season Effect

Altitude Effect

Method

Step 2: Data Analysis & Trends Identification

Dissipation Effect

How does power dissipation on each thermal zone influence the temperature of other zones and the efficiency of radiators ?

Method

Step 2: Data Analysis & Trends Identification

Dissipation Effect

How does power dissipation on each thermal zone influence the temperature of other zones and the efficiency of radiators ?

Method

Step 2: Data Analysis & Trends Identification

Season & Aging Effects

How do seasonal variations of the solar constant and the aging process of thermo-optical properties affect the temperature of the spacecraft?

Seasonal Effect on Temperature in BOL

Aging Effect on Temperature in SS

Method

Step 2: Data Analysis & Trends Identification

Altitude Effect

How does a change in altitude affect the temperature of the spacecraft?

Method

Scaling of aging & season

Method

Step 3: Thermal Zones Temperatures

Example: How do we predict the temperatures from the base case?

EUROPEAN SPACE THERMAL ENGINEERING WORKSHOP 2024 Base Case Base Case Study Case Study Case **Dissipation Mezzanine 0W 1999 0W** 35W **Method Shelf** 0W 16W Step 3: Thermal Zones Temperatures **Top Floor** 0W 0W Aging **Begining Of Life - 0years** 4years **Season** Summer Solstice Winter Solstice **Altitude** 500km 600km **Base Case** -15.8 Temperature (°C) -16 \bullet **Δttotal, zone** -16.2 -16.4 -16.6 2000 \circ 1000 3000 4000 5000 Time (s) **Study Case** -2.4 -2.6 **Same thermal** $\frac{1}{2}$ -3 -3.2 1000 2000 3000 4000 5000 $\overline{0}$ loft 19 Time (s)

Method

Step 4: Heating Budget

How can we predict the spacecraft heating power budget ?

How can we model the addition of heating power ?

PAM Dissipation vs Heating Budget

Heating Budget = Added Heating Power **-0.0669** × PAM Dissipation + heating budget of Base case **– 3** × aging scaling factor **– 1** × season scaling factor

Method

Step 5: Payloads Temperature

Q S hk

1st order system simplification to consider transient effects

Interface

$$
T_{t, Payload ON} = T_{t, Interface} + \Delta T \cdot (1 - e^{-(t-t_{on})/T})
$$

T_{t, Payload OFF} = T_{OFF} + (T_{t, Interface} - T_{OFF}) \cdot (1 - e^{-(t-t_{off})/T})

Method

Step 5: Payloads Temperature

Ex: Payload ON for 5 minutes.

Modeling Accuracy

Average Orbital Temperatures

Margin of error target: **+/-5°C**

Predicted - Computed Temperature Differences vs PAM Dissipation

What's next ?

Improvements of the tool and deployment to a wider audience within the company

Short term to do

• **Benchmarking method across various SSO orbits Implement a scaling for the effect of the Beta Angle**

- **Connect this tool to the power budget analysis tools we have**
- **Release the final web app GUI**

Long-term vision

- **Comparison of our "hand made modelling" method with a machine learning approach**
- **Integrate the tool into Loft's automated operations**
- **Ability to load a spacecraft configuration**

