Leveraging Standardized Satellite Architecture For Thermal Analysis

European Space Thermal Engineering Workshop 2024

Adrien Fève – Senior Thermal Engineer Imane Karmoudi – Thermal Analyst

2024.10.09

Summary

- 1. Introduction
- 2. Method
- 3. Modeling Accuracy
- 4. What's Next ?

What are we doing at Loft Orbital ?

Simplicity

Our hardware and software abstraction layers, the Hub and Cockpit, remove the complexity of space missions.

Speed to orbit

We have an inventory of pre-assembled satellite platforms and pre-booked launches, so that we're ready when you are.

Reliability

We leverage commodity satellite buses with the proven heritage of over 600 copies on-orbit.

How do we achieve this hardware-wise?

Our physical missions business cases

Rideshare

Fly hardware on an upcoming satellite.

Dedicated

Fly a full satellite for your mission.

Constellation

Fly a constellation with constant coverage and high revisit rates.

Objectives

Surrogate Model: Leverage our Standardized Satellite Architecture For Thermal Analysis

- Leveraging our standardized thermal architecture
 - Push thermal analysis upfront
 - Better early phase thermal assessments
 - Enhance accessibility of thermal analysis
 - Reduce risks
- Empower everyone within the company to perform thermal analysis: Mechanical, Electrical, Systems, Operation, Sales Engineers etc..

Make thermal analysis simple, fast and reliable for everyone at Loft

Method

Workflow diagram of the process

How can we achieve our goal?

Build a surrogate model of the generic platform

Method

Detailed thermal model of the spacecraft bus and PAM

Method

User Interface of the final tool (fancy mockup..)

Method

Step 1: Computations* & Parameters Variation

Batch A: 108 cases

Parameters studied:

- Floor, Shelf and Mezzanine thermal zones orbit average dissipations
- Aging
- Season

Batch B: 216 cases

Parameters studied:

• Altitude

*The computations were performed using the Systema-Thermica software

Method

Step 1: Computations* & Parameters Variation

• Modeled by single node on each thermal zone

*The computations were performed using the Systema-Thermica software

	Computations Parameters							
	Spacecraft	Mode	On Station					
	Altitud	e	500km	550km	600km			
	Spacecraft A	ttitude	+Z NADIR					
	Orbital Parameters							
	LTAN		22h30					
	Orbit Ty	ре	Sun Synchronous					
	Inclinati	on	97.5°					
	Excentric	0						
	Environmental Fluxes							
	Thermo-Optical	BOL		EOL				
	Seaso			Summer Solstice				
	Total Orbit Average Bu	165						
	PAM Dissipations (W)							
	Duty cycle = 100%	Mezzanine	0	50	100			
		Shelf	0	25	50			
а		Top Floor	0	5	10			

Method

Step 2: Data Analysis & Trends Identification

Our analysis is conducted by evaluating the effect of multiple parameters on the average temperature of a set of thermal zones and the total spacecraft heating budget over a complete orbit.

- Mezzanine
- Shelf
- Top Floor
- Radiators
- Battery
- Solar Arrays

Dissipation Effect

Aging Effect

Season Effect

Altitude Effect

Method

Step 2: Data Analysis & Trends Identification

Dissipation Effect

How does power dissipation on each thermal zone influence the temperature of other zones and the efficiency of radiators ?

Method

Step 2: Data Analysis & Trends Identification

Dissipation Effect

How does power dissipation on each thermal zone influence the temperature of other zones and the efficiency of radiators ?

	Temperature Variations (°C)					
	Radiators	Mezzanine	Shelf	Top Floor	Battery	Solar Arrays
1W on Mezzanine	ΔT = +0.176°C	ΔT = +0.305°C	ΔT = +0.201°C	ΔT = +0.172°C	ΔT = +0.010°C	ΔT = +0.000°C
1W on Shelf	ΔT = +0.170°C	ΔT = +0.203°C	ΔT = +0.421°C	ΔT = +0.271°C	ΔT = +0.010°C	ΔT = +0.000°C
1W on Top Floor	ΔT = +0.151°C	ΔT= +0.176°C	ΔT = +0.274°C	ΔT = +1.234°C	ΔT = +0.010°C	ΔT = +0.000°C

Method

Step 2: Data Analysis & Trends Identification

Season & Aging Effects

How do seasonal variations of the solar constant and the aging process of thermo-optical properties affect the temperature of the spacecraft?

Seasonal Effect on Temperature in BOL

Aging Effect on Temperature in SS

Method

Step 2: Data Analysis & Trends Identification

Altitude Effect

How does a change in altitude affect the temperature of the spacecraft?

Method

Scaling of aging & season

Method

Step 3: Thermal Zones Temperatures

		Base Case	Study Case	
Dissipation	Mezzanine	OW	35W	
	Shelf	OW	16W	
	Top Floor	OW	OW	
Aging		Begining Of Life - Oyears	4years	
Season		Summer Solstice	Winter Solstice	
Altitude		500km	600km	

Example: How do we predict the temperatures from the base case?

Base Case EUROPEAN SPACE THERMAL ENGINEERING WORKSHOP 2024 Dissipation OW Mezzanine 35W Method Shelf OW 16W Step 3: Thermal Zones Temperatures Top Floor OW OW Aging Begining Of Life - Oyears 4years Season Summer Solstice Winter Solstice 500km 600km Altitude Base Case -15.8 Temperature (°C) -16 \bullet **Δt**_{total}, zone -16.2 -16.4 -16.6 0 1000 2000 3000 4000 5000 Time (s) Study Case -2.4 Temperature (°C) -2.6 Same thermal behavior -2.8 -3 -3.2 0 1000 2000 3000 4000 5000 loft 19 Time (s)

Method

Step 4: Heating Budget

How can we predict the spacecraft heating power budget ?

How can we model the addition of heating power?

PAM Dissipation vs Heating Budget

Heating Budget = Added Heating Power -0.0669 \times PAM Dissipation + heating budget of Base case – 3 \times aging scaling factor – 1 \times season scaling factor

Method

Step 5: Payloads Temperature

1st order system simplification to consider transient effects

	Q		S	hk	Interface	,		
Payload Name ↓	Orbit Avera ↑	Mass (kg) ↑	Footprint (mm²)	Thermal Filler 🛧	Thermal Zone 🔹 🛧	Operating Tmin (°C) ↑	Operatin Tmax (°C) ↑	Action
🕎 Payload A	10 W	10 kg	1 000 mm²	eGraph 🗸	Top Floor 🗸	-20 °C	+8.0°C	靣
🕎 Payload B	25 W	10 kg	5 mm²	eGraph 🗸	Shelf ~	2.0°C	35°C	۵
-	-	-	-	Select V	Select V	-	-	
-	-	-	-	Select V	Select ~	-	-	
-	-	-	-	Select V	Select ~	-	-	

$$T_{t,Payload ON} = T_{t,Interface} + \Delta T \cdot (1 - e^{-(t-t_{ON})/\tau})$$

$$T_{t,Payload OFF} = T_{OFF} + (T_{t,Interface} - T_{OFF}) \cdot (1 - e^{-(t-t_{OFF})/\tau})$$

Method

Step 5: Payloads Temperature

Ex: Payload ON for 5 minutes.

Time (s)

Modeling Accuracy

Average Orbital Temperatures

Margin of error target: +/-5°C

Predicted - Computed Temperature Differences vs PAM Dissipation

What's next ?

Improvements of the tool and deployment to a wider audience within the company

Short term to do

• Benchmarking method across various SSO orbits Implement a scaling for the effect of the Beta Angle

- Connect this tool to the power budget analysis tools we have
- Release the final web app GUI

Long-term vision 🔭

- Comparison of our "hand made modelling" method with a machine learning approach
- Integrate the tool into Loft's automated operations
- Ability to load a spacecraft configuration

