

Linearization of the Radiative Component of the Heat Transfer Equation for Space Thermal Analysis

Author : Charles Fabre Co-authors : François Brunetti and Vincent Vadez 8^{th} - 10 th October

Côte d'Azur University esa Alacademy ::: UNIVERSITÉ

- Côte d'Azur University
- \bullet 1st year of master in Mathematical Engineering (Scientific computing)
- Internship Dorea (SME)

ESTEW2024 Page Page 22

- **Real-time** space thermal simulation is a challenge (Digital Twin)
- Approach : **decrease computation time** dedicated to the resolution of the space thermal equation
- Proof Of Concept : 1st study for Dorea on the matter

Problem statement

• Linearize the radiative component

$$
MC_i \frac{dT_i}{dt} = Q_i + \sum_j GL_{ij}(T_j - T_i) + \sum_j \sigma GR_{ij}(T_j^4 - T_i^4)
$$

• Compare with a traditionnal Runge-Kutta 4 method used as reference

$$
y_{n+1} = y_n + h\left[\frac{k_1}{6} + \frac{k_2}{3} + \frac{k_3}{3} + \frac{k_4}{6}\right] \text{ with }
$$

$$
\begin{cases}\nk_1 = f(t_n, y_n) \\
k_2 = f(t_n + \frac{h}{2}, y_n + \frac{h}{2}k_1) \\
k_3 = f(t_n + \frac{h}{2}, y_n + \frac{h}{2}k_2) \\
k_4 = f(t_n + h, y_n + hk_3)\n\end{cases}
$$

Quantify the time gain relative to the error

State of the Art

- Linearization is subject to extensive research in the field of [1] optimization
- But still the log-linearization optimization dates back to 1961 [2]
- Idea : the **first-order Taylor** polynomial provides a **linear approximation**

$$
f(x) = f(a) + f'(a)(x - a) + o(x - a)
$$
 [1]

[1] M. Asghari, A. M. Fathollahi-Fard, S. M. J. Mirzapour Al-e hashem, and M. A. Dulebenets, "Transformation and linearization techniques in optimization: A state-of-the-art survey," *Mathematics*, vol. 10, no. 2, 2022.

[2]

R. E. Griffith and R. A. Stewart, "A nonlinear programming technique for the optimization of continuous processing systems," Management Science, vol. 7, no. 4, pp. 379–392, 1961.

ESTEW2024 Page Page 55

State of the Art

$$
MC_i \frac{dT_i}{dt} = Q_i + \sum_j GL_{ij}(T_j - T_i) + \sum_j \sigma GR_{ij}(T_j^4 - T_i^4)
$$

- How to linearize in thermal engineering?
- (DSPE) Dutch Society for Precision Engineering [3]

 $T_i^4 = T_0^4 + 4T_0^3(T_i - T_0) + o(T_i - T_0)$ Taylor expansion of $T_i \rightarrow {T_i}^4$ at T_0 to the 1st order :

•
$$
T_0 = \frac{T_i + T_j}{2}
$$

\n
$$
MC_i \frac{dT_i}{dt} = Q_i + \sum_j GL_{ij}(T_j - T_i) + \sum_j \sigma G R_{ij} 4T_0^3 (T_j - T_i)
$$

DSPE - Dutch Society for Precision Engineering, "Heat transfer: Radiation." https://www.dspe.nl/knowledge/thermomechanics/chapter-1-[3] basics/1-2-heat-transfer/radiation/, 2024.

ESTEW2024 Page Page 66

• Linearization errors ratio due to T_0 [4]

• For: $T_0 = T_1$

$$
\frac{4T_0^3 \Delta T}{T_1^4 - T_2^4} = \frac{4}{(1 + (\frac{T_2}{T_0})^2)(1 + \frac{T_2}{T_0})}
$$

• For:
$$
T_0 = \frac{T_1 + T_2}{2}
$$

$$
\frac{4T_0^3 \Delta T}{T_1^4 - T_2^4} = \frac{1}{1 + \frac{1}{4}(\frac{\Delta T}{T_0})^2}
$$

Linearization error for a black surface about T_0

J. H. Lienhard V, "Linearization of Nongray Radiation Exchange: The Internal Frac-[4] tional Function Reconsidered," *Journal of Heat Transfer*, vol. 141, p. 052701, 03 2019.

• e-Therm

- **Radiative** model
- 5 cubes, 1 node for each face -> 30 nodes
- **No** external fluxes
- **No** environment

Geometry of the 30 Nodes

Use case

- Conductive couplings : $[50, 250]$ in $[W.K^{-1}]$
- Radiative couplings : [0 , 3·10−3] in [m²]
- Heat capacitance: $[100, 250]$ in $[J.K^{-1}]$
- Same material
	- α = 0,2 (absorptivity)
	- $\rho = 0.8$ (reflectivity)
	- ϵ = 0,2 (emissivity)

 0.0025 0.0020 $\bigg|_{0.001\ddot{36}}$ 0.0010 0.0005 0.0000 10 15 20 25

Visualization of the large disparities in the values of my radiative exchange coupling matrix with i and j the nodes indices

Results (no internal power) esa AA academy

• Many parameters $(T_{init}, h, Q_i, GL_{ij} ...)$ -> multiple configurations

Results (internal power) esa AA academy WERSITÉ

• Same configuration with $Q_i = 2$ [W]

2min28 vs **6min24** Max error **: 2.73°C**

• The error **propagates** (or compensates)

Temperature profile (with internal power) from my linearized equation versus that from my RK4 code

Results (heat capacitance) esa AA academy

- Linearization exponential solution does not reflect the real impact of Cp
- Cp does have an impact on RK4 stability scheme -> need to change integration step h

ESTEW2024 Page 12

Results (integration step) esa AA academy WERSITÉ

• No difference for RK4 method

• 2x more time steps -> potentially 2x more errors due to linearization

ESTEW2024 Page 1313 Page 1313 Page 1313 Page 1313 Page 1313 Page 14 Page 14 Page 14 Page 1313 Page 1313 Page 1

Conclusion

- Conclusion
	- Multiple iterations (86400sec) -> Error hard to predict
	- 3x faster than RK4 but needs validation on a real use case
- Future work :
	- Optimize integration step h
	- Try another linearization scheme
	- Parallelization of Runge-Kutta method [5]

P. Van Der Houwen and B. Sommeijer, "Parallel iteration of high-order runge-kutta methods with stepsize control," Journal of Computational and Applied Mathematics, [5] vol. 29, no. 1, pp. 111–127, 1990.

ESTEW2024 Page 14

Thank you for your time !

Feel free to ask any questions or share your thoughts.

