
Methodology and Tooling to Promote Flight
Software to ECSS Category-A

Guidelines, tools, and examples

Andoni Arregui, Fabian Schriever

2024-06-04
Final Presentation Days, ESTEC

GTD GmbH

Table of Contents

1. Motivation

2. ECSS Category-A Software

3. The Guidelines and Tools We Developed

4. Takeaways

Methodology and Tooling to Promote Flight Software to ECSS Category-A 1

Motivation

Do we care?

What is this?

The Boeing CST-100 Starliner

Methodology and Tooling to Promote Flight Software to ECSS Category-A 2

Do we care?

What is this?

The Boeing CST-100 Starliner

Methodology and Tooling to Promote Flight Software to ECSS Category-A 2

Do we care?

”We are no longer building hardware into which we install
a modicum of enabling software, we are actually building
software systems which we wrap up in enabling hardware.
Yet we have not matured to where we are uniformly
applying rigorous systems engineering principles to the
design of that software. These are serious and pervasive
issues that NASA will need to address in all of its programs
and certainly will be critical to space exploration
endeavors.”

Patricia Sanders –
NASA’s Aerospace Safety
Advisory Panel Chair

Methodology and Tooling to Promote Flight Software to ECSS Category-A 3

European Need for Category-A Software

Why does Europe need Category-A Qualified Software?
• To continue being a player in international cooperation and
• achieving autonomy in access to space.

Revolution Space report

Methodology and Tooling to Promote Flight Software to ECSS Category-A 4

European Need for Category-A Software

Why does Europe need Category-A Qualified Software?
• To continue being a player in international cooperation and
• achieving autonomy in access to space.

ATV 5 units flown between 2008 and 2015

Methodology and Tooling to Promote Flight Software to ECSS Category-A 4

European Need for Category-A Software

Why does Europe need Category-A Qualified Software?
• To continue being a player in international cooperation and
• achieving autonomy in access to space.

Orion European Service Module 6 units contracted for the Artemis missions

Methodology and Tooling to Promote Flight Software to ECSS Category-A 4

European Need for Category-A Software

Why does Europe need Category-A Qualified Software?
• To continue being a player in international cooperation and
• achieving autonomy in access to space.

I-Hab and ESPRIT Refueling Module built for the lunar gateway

Methodology and Tooling to Promote Flight Software to ECSS Category-A 4

European Need for Category-A Software

Why does Europe need Category-A Qualified Software?
• To continue being a player in international cooperation and
• achieving autonomy in access to space.

Space-Rider first one to be launched end of 2024

Methodology and Tooling to Promote Flight Software to ECSS Category-A 4

European Need for Category-A Software

Why does Europe need Category-A Qualified Software?
• To continue being a player in international cooperation and
• achieving autonomy in access to space.

Mars Sample Return - Earth Return Orbiter

Methodology and Tooling to Promote Flight Software to ECSS Category-A 4

European Need for Category-A Software

Why does Europe need Category-A Qualified Software?
• To continue being a player in international cooperation and
• achieving autonomy in access to space.

ADRIOS launch in 2026

Methodology and Tooling to Promote Flight Software to ECSS Category-A 4

ECSS Category-A Software

ECSS Requirements for Category-A Software

What is needed on top of the Category-B requirements
• MC/DC structural coverage
• Verification of added Object Code

Methodology and Tooling to Promote Flight Software to ECSS Category-A 5

E-ST-40 Requires

Full MC/DC coverage

Methodology and Tooling to Promote Flight Software to ECSS Category-A 6

E-ST-40 Requires

Unique Cause MC/DC
This understanding of MC/DC is deprecated since 2001 (CAST-6 DO-178B) and
will be amended in the E-ST-40 revision

Methodology and Tooling to Promote Flight Software to ECSS Category-A 7

E-ST-40 Requires

Unique Cause MC/DC
This understanding of MC/DC is deprecated since 2001 (CAST-6 DO-178B) and
will be amended in the E-ST-40 revision

Methodology and Tooling to Promote Flight Software to ECSS Category-A 7

E-ST-40 Requires

What is needed on top of the Category-B requirements
• Verification of added Object Code

Methodology and Tooling to Promote Flight Software to ECSS Category-A 8

Q-HB-80-04 Requires

Only statement, no decision coverage on object code?
Branches in object code will not be properly exercised.

Methodology and Tooling to Promote Flight Software to ECSS Category-A 9

Q-HB-80-04 Requires

Only statement, no decision coverage on object code?
Branches in object code will not be properly exercised.

Methodology and Tooling to Promote Flight Software to ECSS Category-A 9

European Challenge with Category-A Software

We are not used to it
• SW Engineering:

• Neither to comply with its requirements
• nor to produce the required evidence

• SW Product Assurance:
• Neither to interpret the evidences
• nor to ask the right questions

Methodology and Tooling to Promote Flight Software to ECSS Category-A 10

European Challenge with Category-A Software

Past Cat-A approaches sometimes flawed

• ATV MSU: Only does condition coverage on object code, no MC/DC1.
• ESM PDE: Requires atomic decisions, losing MC/DC error detection capacity

and seems to incorrectly assess object code traceability2.

1§5.2 in Category A Software Development for the ATV, Boudillet, Berthelier, Zekri, 2005
2§3.5 and §3.7 in Critical Software for Human Spaceflight, Preden, Kaschner, Rettig, Rodriggs,

2019

Methodology and Tooling to Promote Flight Software to ECSS Category-A 11

Main Concerns with Category-A Software

What are the main concerns left for Category-A software?
1. Are the requirements detailed enough for the criticality level?

⇒ Quite subjective but Cat-A shall have a higher requirements to Lines of Code rate

2. Has the implemented software logic been sufficiently tested?
⇒ MC/DC is required for Cat-A

Methodology and Tooling to Promote Flight Software to ECSS Category-A 12

Main Concerns with Category-A Software

What are the main concerns left for Category-A software?
1. Are the requirements detailed enough for the criticality level?

⇒ Quite subjective but Cat-A shall have a higher requirements to Lines of Code rate

2. Has the implemented software logic been sufficiently tested?
⇒ MC/DC is required for Cat-A

Methodology and Tooling to Promote Flight Software to ECSS Category-A 12

Main Concerns with Category-A Software

What are the main concerns left for Category-A software?
1. Are the requirements detailed enough for the criticality level?

⇒ Quite subjective but Cat-A shall have a higher requirements to Lines of Code rate

2. Has the implemented software logic been sufficiently tested?

⇒ MC/DC is required for Cat-A

Methodology and Tooling to Promote Flight Software to ECSS Category-A 12

Main Concerns with Category-A Software

What are the main concerns left for Category-A software?
1. Are the requirements detailed enough for the criticality level?

⇒ Quite subjective but Cat-A shall have a higher requirements to Lines of Code rate

2. Has the implemented software logic been sufficiently tested?
⇒ MC/DC is required for Cat-A

Methodology and Tooling to Promote Flight Software to ECSS Category-A 12

Main Concerns with Category-A Software

What are the main concerns left for Category-A software?
3. Has the executable production introduced object code that has not been

verified nor tested?

⇒ Verification of added object code required for Cat-A

4. Have the requirements been validated on a sufficiently representative
platform and environment?
⇒ Validating on and closing on non fully representative platforms may hide errors

5. Has the ISVV activity been adequately carried out in accordance with the
required criticality level?
⇒ Tasks like IVE.CA.T3 do not even require unit tests to be cross-compiled for target

Methodology and Tooling to Promote Flight Software to ECSS Category-A 13

Main Concerns with Category-A Software

What are the main concerns left for Category-A software?
3. Has the executable production introduced object code that has not been

verified nor tested?
⇒ Verification of added object code required for Cat-A

4. Have the requirements been validated on a sufficiently representative
platform and environment?
⇒ Validating on and closing on non fully representative platforms may hide errors

5. Has the ISVV activity been adequately carried out in accordance with the
required criticality level?
⇒ Tasks like IVE.CA.T3 do not even require unit tests to be cross-compiled for target

Methodology and Tooling to Promote Flight Software to ECSS Category-A 13

Main Concerns with Category-A Software

What are the main concerns left for Category-A software?
3. Has the executable production introduced object code that has not been

verified nor tested?
⇒ Verification of added object code required for Cat-A

4. Have the requirements been validated on a sufficiently representative
platform and environment?

⇒ Validating on and closing on non fully representative platforms may hide errors

5. Has the ISVV activity been adequately carried out in accordance with the
required criticality level?
⇒ Tasks like IVE.CA.T3 do not even require unit tests to be cross-compiled for target

Methodology and Tooling to Promote Flight Software to ECSS Category-A 13

Main Concerns with Category-A Software

What are the main concerns left for Category-A software?
3. Has the executable production introduced object code that has not been

verified nor tested?
⇒ Verification of added object code required for Cat-A

4. Have the requirements been validated on a sufficiently representative
platform and environment?
⇒ Validating on and closing on non fully representative platforms may hide errors

5. Has the ISVV activity been adequately carried out in accordance with the
required criticality level?
⇒ Tasks like IVE.CA.T3 do not even require unit tests to be cross-compiled for target

Methodology and Tooling to Promote Flight Software to ECSS Category-A 13

Main Concerns with Category-A Software

What are the main concerns left for Category-A software?
3. Has the executable production introduced object code that has not been

verified nor tested?
⇒ Verification of added object code required for Cat-A

4. Have the requirements been validated on a sufficiently representative
platform and environment?
⇒ Validating on and closing on non fully representative platforms may hide errors

5. Has the ISVV activity been adequately carried out in accordance with the
required criticality level?

⇒ Tasks like IVE.CA.T3 do not even require unit tests to be cross-compiled for target

Methodology and Tooling to Promote Flight Software to ECSS Category-A 13

Main Concerns with Category-A Software

What are the main concerns left for Category-A software?
3. Has the executable production introduced object code that has not been

verified nor tested?
⇒ Verification of added object code required for Cat-A

4. Have the requirements been validated on a sufficiently representative
platform and environment?
⇒ Validating on and closing on non fully representative platforms may hide errors

5. Has the ISVV activity been adequately carried out in accordance with the
required criticality level?
⇒ Tasks like IVE.CA.T3 do not even require unit tests to be cross-compiled for target

Methodology and Tooling to Promote Flight Software to ECSS Category-A 13

Importance of MC/DC

MC/DC is an attribute of the source code syntax and a test set
Restructuring source code on purpose will lower its error detection potential.

This complex decision:
bool complex_decision(bool a, bool b, bool c, bool d) {

return ((a && b) || (c && d));

}

Will require 4 tests to achieve MC/DC.

NOTE: The 4 test cases refer to the ones needed to achieve the so called masking MC/DC with a
number of tests 2 ⋅ ⌈√𝑛⌉, where 𝑛 is the number of conditions in the decision.

Methodology and Tooling to Promote Flight Software to ECSS Category-A 14

Importance of MC/DC

MC/DC is an attribute of the source code syntax and a test set
Restructuring source code on purpose will lower its error detection potential.

This complex decision:
bool complex_decision(bool a, bool b, bool c, bool d) {

return ((a && b) || (c && d));

}

Will require 4 tests to achieve MC/DC.

NOTE: The 4 test cases refer to the ones needed to achieve the so called masking MC/DC with a
number of tests 2 ⋅ ⌈√𝑛⌉, where 𝑛 is the number of conditions in the decision.

Methodology and Tooling to Promote Flight Software to ECSS Category-A 14

Importance of MC/DC

Rewriting it as
bool complex_decision(bool a, bool b, bool c, bool d) {

bool result = false;

if (a && b)

result = true;

if (c && d)

result = true;

return result; }

Will only require 3 tests and will fail to detect a regression if the if (c && d)

decision is removed.

Note:
Coding standards enforcing atomic decisions are cheating on MC/DC.

Methodology and Tooling to Promote Flight Software to ECSS Category-A 15

Importance of MC/DC

Rewriting it as
bool complex_decision(bool a, bool b, bool c, bool d) {

bool result = false;

if (a && b)

result = true;

if (c && d)

result = true;

return result; }

Will only require 3 tests and will fail to detect a regression if the if (c && d)

decision is removed.

Note:
Coding standards enforcing atomic decisions are cheating on MC/DC.

Methodology and Tooling to Promote Flight Software to ECSS Category-A 15

Importance of Added Object Code Verification

Flight software is usually
composed of more than only
the project source code:

Project Source Code

OS

libc

Project Object Code

libgcc Components

libc Components

OS Components

Bootloader
Components

Input Components Flight Software

Methodology and Tooling to Promote Flight Software to ECSS Category-A 16

Importance of Added Object Code Verification

Compilers & linkers introduce additional object code
to flight executable
The flight software is not only composed of your project source code!

Added object code in flight software

1. Elements from the compiler library such as __muldi3 from libgcc

2. Elements from the standard C library not explicitly called by the source
code such as memset()

3. Array bounds checks and other side effects.

Methodology and Tooling to Promote Flight Software to ECSS Category-A 17

Importance of Added Object Code Verification

Compilers & linkers introduce additional object code
to flight executable
The flight software is not only composed of your project source code!

Added object code in flight software

1. Elements from the compiler library such as __muldi3 from libgcc

2. Elements from the standard C library not explicitly called by the source
code such as memset()

3. Array bounds checks and other side effects.

Methodology and Tooling to Promote Flight Software to ECSS Category-A 17

Importance of Added Object Code Verification

You won’t notice at first these elements being added
Adding a modulo operator on 64 bit integers will do this on SPARC V8
architectures:

unsigned long long int func (unsigned long long int a, unsigned long long int b) {

return a % b; }

func:
save %sp, -96, %sp
...
mov %i0, %o0
call __umoddi3, 0
...
restore %g0, %o1, %o1

SW Engineering Question:
Are all functions called within the object code
also described in our design?

Methodology and Tooling to Promote Flight Software to ECSS Category-A 18

Importance of Added Object Code Verification

You won’t notice at first these elements being added
Adding a modulo operator on 64 bit integers will do this on SPARC V8
architectures:

unsigned long long int func (unsigned long long int a, unsigned long long int b) {

return a % b; }

func:
save %sp, -96, %sp
...
mov %i0, %o0
call __umoddi3, 0
...
restore %g0, %o1, %o1

SW Engineering Question:
Are all functions called within the object code
also described in our design?

Methodology and Tooling to Promote Flight Software to ECSS Category-A 18

Importance of Added Object Code Verification

You won’t notice at first these elements being added
Adding a modulo operator on 64 bit integers will do this on SPARC V8
architectures:

unsigned long long int func (unsigned long long int a, unsigned long long int b) {

return a % b; }

func:
save %sp, -96, %sp
...
mov %i0, %o0
call __umoddi3, 0
...
restore %g0, %o1, %o1

SW Engineering Question:
Are all functions called within the object code
also described in our design?

Methodology and Tooling to Promote Flight Software to ECSS Category-A 18

Importance of Added Object Code Verification

The structure of your object code is not the same as your source code
Compilers generate extra branches and rearrange execution paths for
optimization purposes.

Structural coverage on source code not sufficient
The project has no evidence that these new branches and path structures
have ever been exercised or verified.

Methodology and Tooling to Promote Flight Software to ECSS Category-A 19

Importance of Added Object Code Verification

The structure of your object code is not the same as your source code
Compilers generate extra branches and rearrange execution paths for
optimization purposes.

Structural coverage on source code not sufficient
The project has no evidence that these new branches and path structures
have ever been exercised or verified.

Methodology and Tooling to Promote Flight Software to ECSS Category-A 19

Importance of Added Object Code Verification

The structure of your object code is not the same as your source code
Compilers generate extra branches and rearrange execution paths for
optimization purposes.

int function_1 (int n) {

int total = 0;

for (int i = 0 ; i < n ; i++) {

total += i & n;

}

return total;

}

SW Engineering Question:
Can we prove that our object code has
no untested branches?

Methodology and Tooling to Promote Flight Software to ECSS Category-A 20

Importance of Added Object Code Verification

The structure of your object code is not the same as your source code
Compilers generate extra branches and rearrange execution paths for
optimization purposes.

int function_1 (int n) {

int total = 0;

for (int i = 0 ; i < n ; i++) {

total += i & n;

}

return total;

}

SW Engineering Question:
Can we prove that our object code has
no untested branches?

Methodology and Tooling to Promote Flight Software to ECSS Category-A 20

Importance of Added Object Code Verification

Source code structural coverage will require only one test (left side); to achieve
complete object code coverage two are needed on the optimized code (right side).

function_1

0x00000000: save %sp, -104, %sp
0x00000004: st %i0, [%fp + 0x44]
0x00000008: clr [%fp + -4]
0x0000000c: clr [%fp + -8]
0x00000010: b 3c <function_1+0x3c>
0x00000014: nop

JUMP

0x0000003c: ld [%fp + -8], %g2
0x00000040: ld [%fp + 0x44], %g1
0x00000044: cmp %g2, %g1
0x00000048: bl 18 <function_1+0x18>
0x0000004c: nop

NO JUMP JUMP

0x00000018: ld [%fp + -8], %g2
0x0000001c: ld [%fp + 0x44], %g1
0x00000020: and %g2, %g1, %g1
0x00000024: ld [%fp + -4], %g2
0x00000028: add %g2, %g1, %g1
0x0000002c: st %g1, [%fp + -4]
0x00000030: ld [%fp + -8], %g1
0x00000034: inc %g1
0x00000038: st %g1, [%fp + -8]

NO JUMP

0x00000050: ld [%fp + -4], %g1
0x00000054: mov %g1, %i0
0x00000058: restore
0x0000005c: retl
0x00000060: nop

RETURN targets: --

function_1

0x00000000: orcc %o0, 0, %g2
0x00000004: ble 2c <function_1+0x2c>
0x00000008: clr %g1

NO JUMP JUMP

0x0000000c: clr %o0
NO JUMP

0x0000002c: retl
0x00000030: clr %o0! 0 <function_1>

RETURN targets: --

0x00000010: and %g2, %g1, %g3
0x00000014: inc %g1
0x00000018: cmp %g2, %g1
0x0000001c: bne 10 <function_1+0x10>
0x00000020: add %o0, %g3, %o0

NO JUMP JUMP

0x00000024: retl
0x00000028: nop

RETURN targets: --

Methodology and Tooling to Promote Flight Software to ECSS Category-A 21

The Guidelines and Tools We
Developed

The Contract

Contractual Context
The work has been carried out under ESA Contract No.
4000138220/22/NL/AS/adu in 2022 and 2023.

• ESA aimed at the development of a method and its corresponding tools to
systematically promote ECSS Category B software to Category-A.

• All the work has been carried out with great support of ESA TO Andreas
Jung and PA Isabelle Conway.

• Get the guidelines and tools: https://gtd-gmbh.de/cat-a/

Methodology and Tooling to Promote Flight Software to ECSS Category-A 22

https://gtd-gmbh.de/cat-a/

Methodology and Tools

Methodology
• Step-wise systematic method to cover the two main gaps:

• MC/DC Coverage (Referenced by NASA-HDBK-2203; to be integrated in the NASA CAP)

• Verification of added object-code (Often called additional object code verification)

• Examples and FAQs

Tools
• All open-source based (Alternatively proprietary tools can be used)

• Assist in the following tasks:
• Assess MC/DC coverage
• Gather structural coverage on object code (On a function basis)

• Construct function object code Control Flow Graphs and assist in the
object code structural coverage assessment

Methodology and Tooling to Promote Flight Software to ECSS Category-A 23

https://swehb.nasa.gov/display/7150/References+Table?desktop=true¯oName=report-table

Methodology and Tools

Methodology
• Step-wise systematic method to cover the two main gaps:

• MC/DC Coverage (Referenced by NASA-HDBK-2203; to be integrated in the NASA CAP)

• Verification of added object-code (Often called additional object code verification)

• Examples and FAQs

Tools
• All open-source based (Alternatively proprietary tools can be used)

• Assist in the following tasks:
• Assess MC/DC coverage
• Gather structural coverage on object code (On a function basis)

• Construct function object code Control Flow Graphs and assist in the
object code structural coverage assessment

Methodology and Tooling to Promote Flight Software to ECSS Category-A 23

https://swehb.nasa.gov/display/7150/References+Table?desktop=true¯oName=report-table

Assessment of Structural Coverage

Methodology and Tooling to Promote Flight Software to ECSS Category-A 24

Assessment of MC/DC

The methodology proposes a tool (mcdc-checker) to assess the source code
decision structure so that afterwards the standard tool gcov can be used to
assess MC/DC.

FT

B

FC

T

FT

A

T

F

BDD for 𝑎 ∨ 𝑏 ∧ 𝑐
Structural coverage equivalent to MC/DC

Methodology and Tooling to Promote Flight Software to ECSS Category-A 25

Assessment of Added Object Code

Methodology and Tooling to Promote Flight Software to ECSS Category-A 26

Assessment of Added Object Code

Methodology and Tooling to Promote Flight Software to ECSS Category-A 27

Assessment of Object Code

The methodology helps assessing the existence of object code added during the
executable production and proposes tools to gather object code condition
coverage (occtre) and present it on the CFG of each function (asm2cfg).

Methodology and Tooling to Promote Flight Software to ECSS Category-A 28

Some Self Criticism

We shall distrust the compiler for Category-A software
1. Object code analysis information based on DWARF debug information

generated by the cross-compiler.
2. Does the cross-compiler and/or linker add extra object code we are not

detecting?

Use complementary tools for more independence
1. Assessment tools can come from different cross-compiler.

• Newer versions can be used.
• llvm analogous tools can be used substituting GCC/binutils.

2. Linker information to cross-check compiler generated information.
3. Completeness of bidirectional object to source code traceability can be

verified.

Methodology and Tooling to Promote Flight Software to ECSS Category-A 29

Some Self Criticism

We shall distrust the compiler for Category-A software
1. Object code analysis information based on DWARF debug information

generated by the cross-compiler.
2. Does the cross-compiler and/or linker add extra object code we are not

detecting?

Use complementary tools for more independence
1. Assessment tools can come from different cross-compiler.

• Newer versions can be used.
• llvm analogous tools can be used substituting GCC/binutils.

2. Linker information to cross-check compiler generated information.
3. Completeness of bidirectional object to source code traceability can be

verified.
Methodology and Tooling to Promote Flight Software to ECSS Category-A 29

Takeaways

Some Best Practices

Software Engineering/Validation shall ask itself if
1. Structural coverage data has been gathered only with unit tests (good)

or also with validation tests (bad).
2. Source code structural coverage has been gathered with non optimized

compilation.
3. Unit tests have been cross compiled and executed on target.
4. The project verified function symbols in object code that come from

outside of the project source code.

Methodology and Tooling to Promote Flight Software to ECSS Category-A 30

Some Best Practices

Software Development Processes shall not
1. Allow source code to be rewriten with only simple decisions (e.g., if

(A)).
2. Allow gathering structural coverage data only on optimized object code

(and not on source code).
3. Accept completeness of object to source traceability only because

source traces for all object code addresses have been produced.
4. Accept object code coverage is complete by checking all project source

code functions.

Methodology and Tooling to Promote Flight Software to ECSS Category-A 31

	Motivation
	ECSS Category-A Software
	The Guidelines and Tools We Developed
	Takeaways

