

eesa

FPG-AI: a Technology Independent Framework for Edge AI Deployment Onboard Satellite, and its Characterisation on NanoXplore FPGAs

ESA OSIP Idea - Early Technology Development

ESA TEC-ED Final Presentation Days

4 June 2024

Presenter: Tommaso Pacini

- Activity Context and Background
- Proposal Objectives
- FPG-AI Extension to RNNs
- Implementation on NX FPGAs
- Hardware Prototyping
- Conclusions

- Activity Context and Background
- > Proposal Objectives
- > FPG-Al Extension to RNNs
- Implementation on NX FPGAs
- Hardware Prototyping
- Conclusions

Activity Context

- > Growing interest in **AI for space applications**:
 - > Weather and Atmospheric Monitoring
 - > Object Detection and Tracking
 - > Ground Classification
 - > Fault Detection, Isolation, and Recovery for Reliability
 - > Autonomous Spacecraft Navigation
- > AI deployment onboard the satellite constitutes an open challenge
- > Satellites are resource- and power- constrained devices operating in a harsh environment
- > The **complexity of AI models** collides with the limitations of satellite platforms

Activity Context

> Multiple hardware technologies are being investigated for AI acceleration onboard the satellite:

FPGAs are a promising technology for AI acceleration for their <u>energy efficiency</u> and <u>radiation</u> tolerance

The design of FPGA-based accelerators for AI typically requires <u>high design expertise</u> and <u>long</u> <u>time-to-market</u>

> Growing interest in **DNN-to-FPGA automation toolflows** for rapid AI deployment onboard the satellite

Final Presentation Days – June 2024

Background: FPG-AI Toolflow for CNNs

> Automation toolflow for efficient deployment of pre-trained CNN models on FPGA technology [1], [2]

Final Presentation Days – June 2024

intel)

FPG-AI Key Features

> Easy integration in user-defined SoCs:

- > Providing as output the accelerator HDL sources and not the final bitstream
- > Possibility to tune the resource consumption according to the requirements of other IPs
- No workload sharing with the Host-CPU

> Unmatched device portability of the Modular Deep Learning Engine (MDE) thanks to:

- Absence of third-party IPs
- > High scalability in terms of DSP/On-chip memory usage
- Fine-grain configurable through a .vhd file

Enabling the implementation on FPGAs from different vendors and heterogeneous resource budgets!

- Activity Context and Background
- Proposal Objectives
- > FPG-Al Extension to RNNs
- > Implementation on NX FPGAs
- Hardware Prototyping
- Conclusions

Overview Events

Final Presentation Days – June 2024 https://activities.esa.int/index.php/4000141108

· e esa

?

Proposal Objectives

- "Extending and consolidating the framework to a wider set of supported Al algorithms, e.g. Recurrent Neural Networks (RNNs)"
- "Ensuring that all state-of-the-art devices are supported by the tool, especially focusing NanoXplore (NX) FPGAs, enabling the use of these devices for AI applications and pursuing European sovereignty"
- > "Evaluating the tool capability with a prototype hardware demonstrator"

Team Composition

- Full Prof. Luca Fanucci
 - Responsible for Management tasks
 - > Time allocated to the project: 2M

- > ESA Staff Silvia Moranti
 - Technical Officer
 - ESA/ESTEC Microelectronics Section

Assistant Prof. Pietro Nannipieri

- Responsible for Hardware Prototyping and Dissemination Activity
- Time allocated to the project: 4M

- > Research Fellow
- Responsible for Extension to RNNs, Extension to NX FPGAs, Benchmark Activity
- > Time allocated to the project: 12M

Eng. Matteo Dada

- Scholarship holder
- Working on Extension to RNNs
- Time allocated to the project: 5M

- Eng. Tommaso Bocchi
 - Working on Extension to NX FPGAs, Hardware Prototyping, Benchmark Activity
 - > Time allocated to the project: 6M

- Activity Context and Background
- > Proposal Objectives
- FPG-AI Extension to RNNs
- > Implementation on NX FPGAs
- Hardware Prototype
- Conclusions

Recurrent Neural Networks (RNNs)

- > Commonly used for sequence classification or time series forecasting tasks (e.g. FDIR onboard satellite)
- Exploiting feedback loops to deal with temporal sequences of data
- Most popular architectures:

Extension to RNNs

> Model compression strategy:

- Global: Recurrent layers shares the same quantization configuration
- Uniform: the quantization levels are equally spaced
- > Symmetric: each quantized distribution is centered on zero
- Post-training: to be applied on pre-trained models

> Design Space Exploration:

- Iterative algorithm which explores one configuration at a time
- > Exploiting a detailed analytical model of the hardware
- Sensitive to user's constraints

> Hardware architecture:

- > Streamline architecture
- HDL-based custom blocks for LSTM and GRU [3]

> Test and validation:

> Bit-true comparison between quantized model and hardware outputs

Final Presentation Days – June 2024

Tsamples

GRU Layer (32 Units)

LeakyReLU

Reported Case Study

- Fault Detection Isolation and Recovery (FDIR) system based \triangleright on MARSIS (Mars Advanced Radar for Subsurface and Ionosphere Sounding) dataset [4]
- **RNN-based models** used to forecast temperature values \succ collected by the sensors
- Maximum Absolute Error (MAE) used as quality metric \triangleright

Implementation Results – 1 PE

> Implementation on AMD, Intel, and Microsemi FPGAs to prove the technology-independence:

	XCZU7EV	XC7Z045	XQRKU060	RTG4	10AX048
Vendor	AMD Xilinx		Microchip	Intel	
LUT	23033	23304	23092	37009	12698
	(10.0%)	(10.7%)	(7.0%)	(24.4%)	(6.9%)
FF	12874	12846	12867	15379	13523
	(2.8%)	(2.9%)	(1.9%)	(10.1%)	(1.8%)
BRAM/LSRAM/M20K	7	6	7	8	3
	(2.2%)	(1.1%)	(0.6%)	(3.8%)	(0.2%)
DSP	14	14	14	63	9
	(0.8%)	(1.6%)	(0.5%)	(13.6%)	(0.7%)
MDE Frequency [MHz]	200.0	122.0	120.5	57.5	111.1
AXI Frequency [MHz]	333.3	212.8	222.2	95.2	212.8

- Activity Context and Background
- Proposal Objective and Organization
- FPG-Al Extension to RNNs
- Implementation on NX FPGAs
- Hardware Prototype
- Conclusions

Implementation on NX FPGAs 1/3

> Study of NX Technology and Design Suite:

- Ramp up on NX Design Suite (Impulse 23.3.0.2)
- Study of NanoXplore on-chip memory and DSP resources
- 20/07/2023: One-day visit to NanoXplore headquarters in Paris for early feedbacks on Impulse flow and for identifying the hardware platform

→ NG-Ultra FPGA selected as the target device

> Selected Case Studies:

- ≻ LeNet-5:
 - Digits recognition on MNIST dataset
 - Layers: 2x[Conv + AvgPool] + 3 Dense
 - > 44K parameters (~1.36 Mbit)

> Network in Network (NiN):

- Image classification on CIFAR10 dataset
- Layers: 9 Conv + 1 GlobalAvgPool
- > 969K parameters (~29.68 Mbit)

Implementation on NX FPGAs 2/3

> Upgrade of FPG-AI hardware architecture for NX technology:

- Main issue: low implementation frequency
- > Pin-point changes to the architectural stage for CNNs to reduce the critical path
- > Frequency increased from **28.6 MHz up to 43.0 MHz for LeNet-5, 15 MHz from up to 25.6 MHz for NiN** (for the MDE only)

> Exploitation of FPG-AI and NX development tools to obtain implementation results:

> Summary of the collected results on NG-Ultra:

	LeNet-5	NiN	MobileNet	VGG16	
1 PE	\checkmark	\checkmark	On-goi	ng	
16 PE	\checkmark	\checkmark	(actively working with NX support te		

Implementation on NX FPGAs 3/3

Model	#PE	LUT	FF	Register File Block	DPRAM	DSP	MDE Frequency [MHz]	AXI Frequency [MHz]
LeNet	1	9197 (2%)	4631 (1%)	89 (4%)	29 (5%)	51 (4%)	30.82	33.7
	16	13252 (3%)	5415 (2%)	38 (2%)	149 (23%)	426 (32%)	24.16	34.17
NiN	1	29503 (5.5%)	11433 (2.3%)	0 (0%)	340 (50.6%)	41 (3.1%)	20.8	24.4
	16	38247 (8%)	12450 (3%)	0 (0%)	297 (45%)	415 (31%)	19.5	33.8

- Activity Context and Background
- > Proposal Objectives
- > FPG-Al Extension to RNNs
- Implementation on NX FPGAs
- Hardware Prototype
- Conclusions

Model and Platform Selection

- > Selection of a development platform hosting a NX FPGA:
 - > NG-Ultra Devkit Board v1.1, suggested by NanoXplore and kindly received on loan from ESA Microelectronic Section
- > Identification of the DNN model to be characterized in hardware:
 - > LeNet-5 selected as the target model (light and commonly used model)

Accelerator Generation with FPG-AI

FPG-AI Integration on NG-Ultra Devkit SoC

> Hardware prototype concept:

PL/PS Interface

- Extension of the accelerator AXI interface to 128-bit to ensure compliance with NG-Ultra SoC – Successful
- Instantiation of the AXI SoC interface component (NX Library) in the VHDL top level to connect the PS and the PL – Successful
- Development of C code to initialize the DDR memory and to control the accelerator Successful
- Clock generation with PLL Successful
- Performed test to validate communication between PS and accelerator's register file (AXI Slave interface) Work in progress
 - Problem discussed with NX
 - > Outcome: NX recently released NX-scope logic analyzer support for NG-Ultra Dev-kit
 - > Currently investigating the problem with the tool

Final Presentation Days – June 2024

FPG-Al Integration on ZCU106

- > Deployed LeNet-5 accelerator on an AMD Xilinx ZCU106 Board to validate FPG-AI interface and logic
- Featuring the ARM Cortex A53 on the PS side
- > The accelerator IP is the same as that instantiated on the NG-ULTRA SoC

Comparison with Bambu 1/2

- <u>Bambu</u>: open-source framework aimed at assisting the designer during the high-level synthesis of complex applications developed by Politecnico di Milano
- > Target model:

CNN	
MNIST	
28 x 28 x 1	
1	
12	
3 x 3	
1	
2 x 2	
Max Pooling	
1	7
10	
	CNN MNIST 28 x 28 x 1 1 12 3 x 3 1 2 x 2 Max Pooling 1 10

Comparison with Bambu 2/2

Implementation results on NG-Ultra:

	Bambu [6]	FPG-AI – 1 PE	FPG-AI – 4 PE
LUT	4627 (0.9%)	4648 (0.9%)	5023 (0.9%)
FF	5714 (1.1%)	2428 (0.5%)	2533 (0.5%)
DPRAM	34 (2.2%)	21 (1.4%)	31 (2.0%)
DSP	54 (4.0%)	15 (1.1%)	42 (3.1%)
Frequency [MHz]	45.7	41.3	35.1
Cycles	169649	12300	5748
Inference time [ms]	3.71	0.30	0.16
Accuracy [%]	N/A	93.55	93.55

The specificity of FPG-AI for AI workloads leads to higher efficiency metrics than general-purpose frameworks that exploit HLS code generation

- Activity Context and Background
- > Proposal Objective and Organization
- FPG-Al Extension to RNNs
- > Implementation on NX FPGAs
- Hardware Prototype
- Conclusions

Project Outcome

> FPG-AI: end-to-end toolflow for the acceleration of DNNs on FPGAs

- > Technology-independent flow: possibility to target FPGAs from Xilinx, Intel, Microsemi, and NanoXplore
- Easy integration in user-defined SoCs and high degree of customization

> Extension to Recurrent Neural Networks (RNNs):

- Achieved implementation results on multiple RNN-FPGA pairs
- > Toolflow characterized for Fault Detection and Sequence Classification tasks

Extension to NanoXplore technology:

- > Achieved implementation results for two CNN models targeting the NG-Ultra device
- > Deployed FPG-AI's accelerator on a Zynq ZCU106 Development Board to evaluate the flow
- > Built a solid expertise on NX flow that will be used to finalize the hardware prototype on NG-ULTRA

Thanks for the attention!

FPG-AI Framework Features

- Ready-to-use Tooflow
- Supporting for both CNN and RNN models
- Technology Independent HDL
- Extremely portable solution
- Enabling Space Qualified AI Acceleration

Project Technical Outcomes

- ✓ Made FPG-AI Available to the Space Community
- ✓ Designed support for LSTM and GRU RNN layers
- First AI Implementation on NanoXplore NG-ULTRA FPGA

Contacts:

- Prof. Luca Fanucci, <u>luca.fanucci@unipi.it</u>
- Assistant Prof. Pietro Nannipieri, <u>pietro.nannipieri@unipi.it</u>
- Research Fellow Tommaso Pacini, tommaso.pacini@phd.unipi.it

