E N7 SPACE

Evaluation of Rust usage in space applications by
S PFPHLCE developing BSP and RTOS targeting SAMV71




SPACE

Agenda

Project objectives summary

Project achievements summary

* Demo

Conclusions and lessons learned



Project objectives summary

“The proposed activity is to evaluate the usage of Rust programming language in space applications,
by providing an RTOS targeting ARM Cortex-M7 SAMV71 microcontroller, a BSP (Board Support
Package) and a Demonstration Application.”

Tasks:

Aerugo RTOS development
SAMV71 BSP development

Demonstration application development

Creation of Rust Viability Report

SPACE



PROJECT ACHIEVEMENTS
SUMMARY



RTOS - Aerugo

* Designed with simplicity in mind
* Inspired by FreeRTOS
* Influenced by purely functional programming paradigm and architecture of transputers
e Easier ECSS qualification

* Implemented in the form of an executor
* Tasklets instead of traditional tasks based on threads

* Tasklets are fine-grained units of computation, that execute a processing step in a finite amount of
time
* Share stack
* Avoid context switches
e Predictable concurrency patterns
» Scheduled for execution once all the data they require is available
* Cannot contain blocking operations waiting on products of other tasklets
e Cannot contain infinite loops

SPACE



iL]rOS

2024-06-04

3

SFPRACE




pub
pub
pub

buffer: TelecommandBuffer,
conte:s amut TaskUartReaderConte

&'static dyn Runtimelpi,

from{&buffer[@..=5].try_intol).unwrapf(}) {

h

Mrite_ccsds_packet{un 2 5 J s_mut().unwrap()} });

logln!{

"Could not parse CCSDS primary header of received telecommand ({:
reason,

buffer

SPACE



3

SFPRACE

SAMV7/1 BSP

* Designed in line with the standards in the embedded Rust community
* PAC — Peripheral Access Crate
* HAL - Hardware Abstraction Layer

SAMV71 HAL

2024-06-04




AerugoHAL

* Interface for integration between Aerugo and HAL

rror.

em peripherals.

Self::Error»;

fn feed_watchdog()};

SPACE



Everything is available on the open-source license

n7space / aerugo

Safety-critical applications oriented
Real-Time Operating System written in Rust

https://github.com/n7space/aerugo

2024-06-04
SPACE



DEMO



Demonstration application

* SAMV7/71Q21 ARM Cortex-M MCU

* LSM6DSO accelerometer-gyroscope sensor connected via SPI

* UART C&C TC/TM interface to the host computer

LSM6DSO

D=3 spi

SPACE

SAMV71

1

2024-06-04

D=1 UART

Linux Host




3

2024-06-04

SFPRACE




CONCLUSIONS AND LESSONS
LEARNED



Rust Viability Report

Examines the strengths, weaknesses and the viability of Rust further use in the space applications

Based on the outputs and conclusions coming from the Aerugo RTOS

As well as on the thought of the developers

Plans to release it publicly

SPACE



RESULT?

Rust is very promising.



SPACE

Strong sides of Rust

* Dedication to memory safety

* High-performance capabilities

e Built-in documentation tests and examples

* Active ecosystem and engaged community

* Absence of legacy burdens, but including interoperability with C
* Typestate pattern fits driver development

* Traits as an alternative to the object-oriented inheritance system



SPACE

Weak sides of Rust

» Steep learning curve

* Difficulties in changing approach when coming from C
* Build times

* Tools and libraries aren’t as mature

» Support for different hardware targets

* Availability and stability of language features



Way forward

Implement asynchronous executor using Rust "async’ feature

Further development of SAMV71 HAL
* MCAN, SDRAMC, GMAC, TWIHS...

Create SAMRH71 HAL

Qualification according to ECSS standard to the category B

SPACE



THANK YOU FOR YOUR ATTENTION

Filip Demski
fdemski@n7space.com

SFPRARCE



