

HEICO

B

Impact of IRENE models on Total Ionizing Dose, Single Event Effects and solar cell degradation, using OMERE and FASTRAD softwares

Damien HERRERA (TRAD), Rémi Benacquista (TRAD), Kevin LEMIERE (TRAD), Soufian YJJOU (TRAD), Robert ECOFFET (CNES)

IRENE Workshop – 20/22 May 2025 - Sykia, Corinthia, Greece

Overview

- OMERE software
- FASTRAD software
- Impact on Total Ionizing Dose (TID)
- Impact on Single Event Effect (SEE) rate calculation
- Impact on Solar cells degradation
- Conclusion

OMERE software

The OMERE software

• The project

- Since 1999
- TRAD development with CNES support
- Freeware for space radiation environment and effects on electronic components
- Stand alone software (no internet connection needed)
- Conceived to meet industrial requirements
- Integrates ONERA models
- Integrates outcomes of Research and Technology projects financed by CNES
- Coupling with FASTRAD.

The OMERE software

- Many other functionnalities
- User Manual

FASTRAD software

Created in 2001

3D interface

User Manual

Mappings,

The FASTRAD[®] software

Modeling step Materials • Input: Radiation model Components ٠ +150 users worldwide Space environment OMERE / Other files **TID/TNID** calculations Internal charging calculations Multithreading calculations, ...

Impact on Total Ionizing Dose (TID)

Missions and space environment models

- Four missions:
 - LEO: 800 km, 98°, 10 years
 - MEO GALILEO: 23222 km, 56°, 12 years
 - GEO: 15 years,
 - EOR (LEO 250 km to GEO): 130 days

Mission	Trapped electrons	Trapped protons
	AE8 max	AP8 min
LEO, MEO and EOR	AE9 mean	AP9 mean
	AE9 PM-mean	AP9 PM-mean
	AE9 PM-80/90/95%	AP9 PM-80/90/95%
GEO	All + IGE 2006	All

Methodology

Models: Platforms, units and components

Unit A

Tests & radiation

cnes

CENTRE NATIONAL

Unit B

Unit C

ICARE

Models	Equipments	Detectors
G1_unitA	10	530
G1_unitB	10	730
G1_unitC	10	530
G2_unitA	10	530
G2_unitB	10	730
G2_unitC	10	530
JASON_ICARE	6	2262
Total		5842

Ì

Dose ratio for trapped electrons

- Ratios between 0.3 and 6.
- EOR and MEO: AE9 underestimates the dose compared to AE8, low range between min and max ratio → Same behavior for all the detectors,
- **GEO**: AE9 overestimates the dose compared to IGE2006 (from 2 to 5),
- LEO: Huge impact of percentile parameter. High range between min and max ratio → Hard to say if using AE9 will
 under or overestimate the dose.

Dose ratio for trapped protons

- Ratios between 1.2 and 4.
- LEO and EOR: AP9 overestimates the dose compared to AP8,
- The dose slightly increases with the percentile parameter,
- LEO: Low range between min and max ratios \rightarrow Could be used for predictive behavior,
- EOR: Max ratios near the average value, meaning that only few detectors experiment a low dose level.

Impact on SEE rates

Missions and components

- Two missions:
 - LEO: 800 km 98°
 - EOR (LEO 250 km to GEO)
 - Neither GEO nor MEO (no sufficient energetic trapped protons to cross the shielding)

Mission	Trapped protons	
	AP8 min	
LEO and EOR	AP9 MC-mean	
	AP9 MC-80/90/95%	

Components

- Realistic component database

- Realistic component database Different cross section sensitivity profiles 9 components: 4 with test data 5 using Heavy lons test data and PROFIT 90° model

SEE rate ratios VS Missions and models

- Ratios between 1.8 and 5.5,
- AP9 overestimates the SEE rate compared to AP8,
- High impact of the percentile parameter on the SEE rate,
- This overestimation has to be analyzed considering the margin applied by industry companies (ex: margin of 10 for ECSS standard).

Impact on solar cells degradation

SADC tool

• SADC (**Solar Array Degradation Calculator**) developed in the frame of ESA ARTES AT-4F.126 project (TRAD prime with ONERA, OHB, ADS & TAS)

- Integration of OMEP model developed by ONERA (p+ 30keV 20 MeV for EOR orbit).
- Global Remaining Factors of different electrical parameters in output,
- Based on NRL method,
- Detailed model of the solar cell:
 - o No limit on materials or shielding thicknesses
 - $\circ~$ User can import NIEL data
 - $\circ~$ No limitation on materials of the active layer
 - ightarrow Study of newer technologies
- Darkening of coverglass is now considered,
- Propagation of measurements uncertainties.

SADC	~			
SADC S	pecific			
✓Layer	list			\odot
YOpt	ical Layer - coverglass			Θ
… Ту	pe	0	ptical Layer	
~ 0p	otical Layer Parameters			
··· I	layer name	coverglass		(
F	Family		Glass	
	Thickness	100		
	Unit	um 🔻	Density:	2.61 g/cm ^³
	Formula	SiO2		
	Transmission path	oss_table - CV	G from ON	ERA.dat 📑
	Transmission error	0 %		
⇒Opt	ical Layer - cg_adhesive			Θ
-> Opt	ical Layer - InP			Θ
⇒ Acti	ve Layer - GaAs			Θ
⇒ Shie	lding Layer - Ge			Θ
⇒ Shie	lding Layer - BackContact			Θ
Shie	lding Layer - back_adhesive			Θ
·-> Shie	lding Layer - Aluminium back	plate		Θ

Solar cell model

- **3G30** cell, widely used in space industry
 - Active part: GaAs

Layer	Type/Function	Material (Density in g.cm ⁻³)	Thickness (μm)
1	Coverglass	SiO ₂ (2.61)	100
2	Adhesive	SiOC ₂ H ₆ (1.03)	20
3	Optical	InP (4.81)	1
4	Active	GaAs (5.12)	2
5	Semi-conductor	Ge (5.35)	140
6	Back contact	Ag (10.5)	5
7	Shielding	Al (2.7)	1200

Solar Cell Degradation	?	×
Flux Type: From mission data	v 📦	\$
Degradation Model SADC SADC Specific SADC Coverglass Optical Layer - coverglass Optical Layer - cg_adhesive Optical Layer - lnP Active Layer - GaAs Shielding Layer - Ge Shielding Layer - BackContact Shielding Layer - back_adhesive Shielding Layer - Aluminium back plate		
C:\Users\damien.herrera\Documents\OMERE 5.9\solarcells.dat		۲
Calculations	(⊗ca	ancel

Ì

Missions and models

Mission	Trapped protons	Trapped electrons	Solar average protons	
LEO (600km SSO)	AP8-min	AE8-max	ESP 90%	
10 years	AP9-PM-mean	AE9-PM-mean		
	AP8-min	MEOv2-average	ESP 85%	
MEO (GALILEO) 12 years	AP8-min	AE8-max		
	AP9-PM-mean	AE9-PM-mean		
EOR (129 days)	OMEP	AE8-max	ESP 95%	
	AP8-min	AE8-max		
	AP9-PM-mean	AE9-PM-mean		
GEO 15 years	AP8-min	IGE2006-average	ESP 80%	
	AP8-min	AE8-max		
	AP9-PM-mean	AE9-PM-mean		

diations HECO CONVERSION AND COLOR SPATIALES Solar cell degradation VS Mission and models

- LEO : Ax9 PM \approx Ax8 \rightarrow Low DDD so RF still in the first part of the curve
- MEO : MEOv2 worst-case compared to Ax9 (DDD mainly due to e-)
- EOR : Ax8 worst-case compared to Ax9 (both p+ and e-)
- GEO : Ax9 worst-case compared to IGE2006 (due to e-)

- Using IRENE models instead of historical ones has a noticeable impact,
- It strongly depends of the effect and the mission considered,
- Lower solar cell degradation compared to Ax8,
- Higher SEE rate compared to AP8 min,
- Dose level, compared to Ax8, depends of the mission.

Thank you for your attention

For further information on:

<u>www.trad.fr</u> – <u>www.fastrad.net</u> <u>www.rayxpert.com</u> – <u>www.r2cots.com</u>

TRAD Tests & Radiations @TRAD_Officiel

Back-up

Ray-Tracing calculation

- Ray-Tracing
 - Division of the sphere surrounding the sensitive area in identical solid angles,
 - Calculation of the dose in each solid angle based on the dose-depth curve,
 - Average over all the solid angles.

Dose contribution

TRAD Tests & Radiations

AE9 and missions

• LEO:

- Ratio strongly dependent of the received dose level,
- For dose level > 1krad, ratios between 1.5 and 3.

Ì

Dose ratio in Reverse Monte-Carlo Trapped electrons

Ì

Representativeness of 3D models

• Shielding profile of detectors for G1_unitA and JASON_ICARE models

TID: LEO (800km SSO)

SEE: LEO (800km SSO)

Ì

TID: MEO

ies

CENTRE NATIONA

D'ÉTUDES SPATIALES

Tests & radiation

HEICO C

ð

Solar cells degradation: MEO

Solar cells degradation: EOR

ð

Solar cells degradation: GEO

ð