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Analytical Covariance Matrices
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Background

• Climatology models that go beyond a mean environment require spatial and spatiotemporal covariance to 

estimate confidence levels

• The model domains typically have 3 or 4 “spatial” dimensions, e.g., E, K, F

• For a 3-d model, the spatiotemporal covariance is a 7-dimensional function:

– 𝑟 𝑥1, 𝑥2, 𝑥3, 𝑥1
′ , 𝑥2

′ , 𝑥3
′ , ∆𝑡 = cov 𝑗 𝑥1, 𝑥2, 𝑥3, 𝑡 , 𝑗 𝑥1

′ , 𝑥2
′ , 𝑥3

′ , 𝑡 + ∆𝑡

– 𝑗 is flux or log flux or a Gaussian replacement of flux

– This function has several constraints, for example, when ∆𝑡 = 0 and Ԧ𝑥 = Ԧ𝑥′, then 𝑟 =1

• ONERA has a simplified solution [Brunet+2021]: 

– Obtain spatial correlations from a simulation (Salammbo) and data set (Van Allen Probes)

– Obtain spatiotemporal correlations with a temporal decorrelation function fitted to data

– 𝑟 𝑥1, 𝑥2, 𝑥3, 𝑥1
′ , 𝑥2

′ , 𝑥3
′ , ∆𝑡 = cov 𝑗 𝑥1, 𝑥2, 𝑥3, 𝑡 , 𝑗 𝑥1

′ , 𝑥2
′ , 𝑥3

′ , 𝑡 exp −
∆𝑡2

2𝜏 𝑥1,𝑥2,𝑥3 𝜏 𝑥1
′ ,𝑥2

′ ,𝑥3
′

– Does not handle asymmetric temporal correlations

– Cannot interpolate or extrapolate spatially if the simulation or data set do not cover the entire domain of the 

climatology model

• We expand on prior works in Gaussian Processes [Paciorek+Schervish, 2004; Rasmussen+Williams, 2006] 

to develop a flexible non-stationary covariance function in the form of a neural network

• We train the neural network with data from a numerical simulations, electrons so far:

– VERB [Saikin+2021] that uses a V, K, L coordinate system (already in use)

– BAS-RBM [Glauert+2018] uses E, K, L* coordinate system (not yet in use)
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Neural network model of spatio-temporal covariance

• We extend the space to a fourth dimension (∆𝑡), which allows 

for r Ԧ𝑥𝑖 , Ԧ𝑥𝑖; ∆𝑡 < 1

• We can employ an input swap requirement to ensure 

symmetry r Ԧ𝑥𝑖 , Ԧ𝑥𝑗; ∆𝑡 = r Ԧ𝑥𝑗 , Ԧ𝑥𝑖; −∆𝑡

• We train a separate network at each ∆𝑡. In practice the network 

only knows that ∆𝑡 > 0, and actually uses ∆𝑡=1 in all cases for 

numerical stability. The real value of ∆𝑡 is only used to build 

training data and to label the network

𝛴 =

𝜏1
2 𝑐12𝜏1𝜏2

𝑐12𝜏1𝜏2 𝜏2
2
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𝜏3
2 𝑐3𝑡𝜏3𝜏𝑡
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2
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Example NN Spatio-Temporal Covariance Fit (1 day time lag)

Dt = 1 day

NN covers all V, K, L in sim. Only one slice shown here.

Notice slight asymmetry across diagonal, circled O
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A new idea inspired by Reimann spaces

• Build a space-time coordinate transform to a system where decorrelation is isotropic (a “flat” space):

– Ԧ𝑞, 𝑠 = Ԧ𝑔( Ԧ𝑥; ∆𝑡)

– 𝑟 Ԧ𝑞𝑖 , Ԧ𝑞𝑗 , 𝑡𝑖 − 𝑡𝑗 = 𝜌 Ԧ𝑞𝑖 − Ԧ𝑞𝑗
2

+ 𝑠𝑖 − 𝑠𝑗
2

• Constraints:

–
𝜕𝑔𝑖

𝜕𝑥𝑖
> 0 (monotonic)

–
𝜕𝑔𝑖

𝜕𝑥𝑗
=

𝜕𝑔𝑗

𝜕𝑥𝑖
 (symmetric)

–
𝜕𝑔

𝜕 Ԧ𝑥
> 0(non-singular matrix determinant)

– 𝜌 0 = 1 (consistent)

– ∇𝜌 ∙ ∇ Ԧ𝑞𝑖 − Ԧ𝑞𝑗
2

+ 𝑠𝑖 − 𝑠𝑗
2

< 0 (decorrelation with distance)

• Implementing constraints is fairly easy in modern NN codes (e.g., PyTorch): it’s just another term in the penalty 
function

• Constraints can/should be applied over entire valid range of Ԧ𝑥, ∆𝑡, not just where there’s data

• This approach avoids a lot of the structural complexity of the prior approach, but it should be able to capture 
the same structural details – a spatial transform of this type is implicit in the 7-D covariance function
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Reimann-inspired NN model of spatio-temporal covariance

• This neural network can be trained on the entire data set of correlations

– Training tuples: Ԧ𝑥𝑖 , 𝑡𝑖 , Ԧ𝑥𝑗 , 𝑡𝑗 → 𝑟

– Observed correlations

– Model correlations

– Constraints

• Constraints should be applied at points within the domain randomized at every training step

• Weighting strategy among observed correlations, model correlations, and constraints will likely require 

some hand tuning
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=
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What we learned about using simulation data

• Sims often include a boundary region to separate the main physics domain from highly uncertain boundary 

conditions. Correlations computed in this boundary region are not valid and must be excluded from training 

data.

• The VERB sim appears to have certain grid points with anomalously low/no variation. Correlations involving 

these points are not valid and must be excluded from training data.

• The VERB sim appears to require a few years to “warm up”, especially at low L. Correlations should be 

computed only after this warm-up period.
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New Marginal Distributions for Climatology 

Models
Acknowledgement: Constantinos Papadimitriou of SPARC contributed 

substantially to the investigation of new approaches to marginal distributions.
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Introduction

• Marginal distributions describe the variability of particle flux at a specific point in the climatology model’s 

grid

• Current climatology models take two different approaches to marginal distributions:

– Tables of fluxes at prescribed percentiles

– Parameters of analytical distributions (e.g., Weibull, Log-Normal which have 2 parameters)

• Tables are more precise, but it is complex to represent the uncertainty on them: O(N2) problem for table of 

N percentiles

• Parameters are easier to work with, but are less precise and have discontinuities if different functional 

forms are used for the same species (e.g., plasma electrons and radiation belt electrons)

• With Constantinos Papadimitriou at SPARC, we have developed a hybrid approach that combines tables 

for describing the marginal distribution with a 2-parameter approach to uncertainty

• Briefly: the marginal distribution is given as a table with a generalized gamma distribution* as its tail, while 

the uncertainty is tracked only for the 50th and 95th percentile. To perturb the entire distribution, first perturb 

the 50th and 95th percentiles, then interpolate/extrapolate those changes (in a power-law sense) to other 

percentiles

• *generalized gamma is a gamma distribution with a power-law transform applied to the variate
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Math

• At each grid point, we have a table of percentiles: 𝑚 ∈ 𝐹 𝑚𝑖 = 𝑝𝑖

– 𝑚𝑖 is the flux at percentile 𝑝𝑖

– 𝑚50 denotes the median, and 𝑚95 denotes the 95th percentile

• Error is represented on transformed variables:

– 𝜃1 = ln 𝑚50, 𝜃2 = ln 𝑚95 − 𝑚50

– Global error matrix 𝑆Θ tracks correlated errors at all grid points for 𝜃1 and 𝜃2

– Perturb all 𝜃 using: Θ′ = Θ + 𝑆Θ Ԧ𝜀, then obtain 𝑚′50 and 𝑚′95 at each grid point

• Assume a power-law perturbation function: 𝑚′
𝑖 = 𝐴𝑚𝑖

𝑏

– 𝑏 = ൗln
𝑚′

50

𝑚′
95

ln
𝑚50

𝑚95
 ,𝐴 =

𝑚′
50

𝑚50
𝑏

– Apply this transform to all percentiles: 𝑚′ ∈ 𝐹′ 𝑚′
𝑖 = 𝐹′ 𝐴𝑚𝑖

𝑏 = 𝑝𝑖

• Tail:

– Original generalized gamma is: 𝐹 𝑥 =  ൗ𝛾
𝑑

𝑐
,

𝑥

𝜎

𝑐
Γ

𝑑

𝑐

– Weibull when 
𝑑

𝑐
= 1, log-normal as 

𝑑

𝑐
→ ∞

– Perturbed is 𝐹′ 𝑥′ = 𝐴𝑥𝑏 = ൗ𝛾
𝑑′

𝑐′
,

𝑥′

𝜎′

𝑐′
Γ

𝑑′

𝑐′
, 𝜎′ = 𝐴𝜎𝑏, 𝑐′ = Τ𝑐 𝑏, 𝑑′ = 𝑑/𝑏, 

𝑑′

𝑐′ =
𝑑

𝑐
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Weibull Example

Tail fit must go through 

anchor point, least 

squares in log P> for all 

other points beyond 5%
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Log-Normal Example
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Summary

• New approach:

– Provides flux at a fixed set of percentiles

– Includes a generalized gamma distribution for the right tail

– Allows power-law perturbation of entire distribution and tail based on perturbing 50th and 95th percentiles

• Improvements

– Achieves greater accuracy via tabular percentiles

– Maintains simple uncertainty quantification via errors on 50th and 95th percentile

– Seamlessly incorporates Weibull and Log-Normal tails in generalized gamma

• To be determined:

– How to decide which percentiles to measure directly when samples are small, and which ones to extrapolate with a fit

– How best to fit the tails, especially in bins with few samples

– How to spatially interpolate/extrapolate tabular values and tail fits

– Should we be using SPINNs instead?
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New Directions
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Should we be Using Statistics and Physics Informed Neural Networks?

• Our models now look like this:

– A spatio-temporal joint probability distribution over time

– Represents likelihood of flux 𝑗 at two points Ԧ𝑥𝑖 , 𝑡𝑖  and Ԧ𝑥𝑘 , 𝑡𝑘

– 𝑝 𝑗 Ԧ𝑥𝑖 , 𝑡𝑖 , 𝑗 Ԧ𝑥𝑘 , 𝑡𝑘 = 𝑝 𝑗𝑖; Ԧ𝑥𝑖 𝑝 𝑗𝑘; Ԧ𝑥𝑘 𝑐(𝑗𝑖 , 𝑗𝑘; Ԧ𝑥𝑖 , Ԧ𝑥𝑘 , 𝑡𝑖 − 𝑡𝑘)

– 𝑝 𝑗; Ԧ𝑥 = ቚ
𝑑𝐹

𝑑𝑗 Ԧ𝑥
 - marginal distribution of flux at Ԧ𝑥

– 𝑐(𝑗𝑖 , 𝑗𝑘; Ԧ𝑥𝑖 , Ԧ𝑥𝑘 , ∆𝑡) – copula describing covariance structure as a function of time lag ∆𝑡 (𝐶 is cumulative copula)

• New developments in neural networks allow us to represent unknown functions 𝐹, 𝐶 as neural networks

• Training could be done on heterogeneous data:

– Simulation data

– Unidirectional differential fluxes

– Integral fluxes

– Raw sensor counts (accounting for sensor response that integrates over grid)

• Training could include statistical constraints:

– Marginals 𝐹 have 0,1 bounds and positive derivative everywhere

– Integral copulas 𝐶 have boundary conditions and all positive derivatives everywhere

• Training could include physical constraints:

– Marginal gradients approximate steady state diffusion equation 

– Marginals obey boundary conditions (loss cone, zero gradient at magnetic equator)
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SPINN challenges

• How do we capture model uncertainty in a SPINN framework? I.e., how do we try to make today’s model 

bound tomorrow’s data?

• How do we train a SPINN?

– Lots of work to figure out how to build penalty functions for legacy data sets

– Enormous data sets (all flight data ever)

– Probably some hand tuning to balance data constraints, statistical constraints, physical constraints

• How do we use a trained SPINN?

– Are we still doing Monte-Carlo sampling to generate scenarios?

– Will it run quickly enough?

– Do we need, instead, to use something like cumulants to avoid Monte-Carlo?
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Can we get away from magnetic coordinates?

• One of the computationally expensive and complex pieces of evaluating a radiation environment model is converting 

from the model’s magnetic coordinates to the spacecraft location

• Using principal component compression, we might be able to store everything on a time, altitude, latitude, longitude, 

energy, pitch-angle grid in a reasonable amount of data

– ~300 altitude steps from 100 km altitude to R=12 RE. 50 km steps in LEO, ~0.7% dR/R

– ~100 L/latitude steps, < 3 degrees latitude step, < 0.25 L step

– 15 longitude steps

– ~50 energy steps from 1 keV to 1 GeV, 30% dE/E

– ~10 pitch angle steps (5, 10, 20, … 90 degrees)

– ~4E8 grid points, stored a single precision (1.6 Gb for unidirectional flux, 0.16 Gb for omni)

• Variation:

– ~100 principal components (165 Gb for unidirectional flux, 17 Gb for omni)

– ~300,000 time steps (31 years at 1 hour resolution)

– 2.7E10 principal component amplitude points

– ~100 Gb

• Developer interpolates their model onto such a grid before software delivery

• Greatly simplifies delivered software:

– Computing full flux maps from PCs and amplitudes

– Interpolating and integrating over flux maps

– No field model, no field line tracing, no drift shell coordinates

• Does not reduce time for Monte Carlo uncertainty and dynamics
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How to parameterize solar cycle variation?

• Solar cycle drives systematic variation in low-altitude proton fluxes (atmospheric density)

• Solar cycle drives systematic variation in the statistics of high-altitude proton and electron fluxes (storms)

• Solar cycles are only quasi-periodic, which poses a challenge for ensuring continuity at solar cycle boundary

• Proposed solution: represent solar cycle phase as two parameters: 

– Current monthly average sunspot number 

– Monthly average sunspot number lagged by ¼ solar cycle (33 months)

R
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h
a
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Declining Phase
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Summary

• Neural networks can allow us to define very flexible covariance models

• Covariance NNs can be trained on real and simulation data

• Generalized gamma distribution combined with tabulated percentiles can replace the log-Normal and 

Weibull formulations we have used previously

• SPINNs might offer a framework to build a grid-free model that can fit heterogeneous data without having to 

convert everything to unidirectional differential flux

• Principal component compression might allow us to build real-space dynamic maps rather than using 

magnetic coordinates

• It might be good to parameterize solar cycle dependence in terms of F10.7 and lagged F10.7
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