PRBEM sensor response format & response function library

Paul O'Brien Space Sciences Department

17 July 2024

© The Aerospace Corporation, 2024

COSPAR 2024 Talk PRBEM.1-0002-24

Introduction

- The PRBEM Response Function File Format provides a standard way to describe the response of a sensor to one or more species as a function of energy and sensor angles
- The PRBEM Response Function Library provides tools for generating and manipulating response functions to perform scientific analyses such as bowtie analysis, spectral inversion, angular inversion, and data assimilation
 - Fully available in Matlab
 - In development in Python

✓ ♥ PRBEM.github.io/documents at × +		PRRFM Docs
← → C ⋒ = github.com/PRBEM/	PRBEM.github.io/tree/main/documents	
Product ~ Solutions ~ Open So	ource V Enterprise V Pricing	There are several standards documents • PRBEM_Response_Format – specifies
<> Code ⊙ Issues 11 Pull requests	🕑 Actions 🗄 Projects 🕕 Security 🗠 Insights	 response file format Standard_CountRate_File_Format – specifies count rate file (level 1)
Files	PRBEM.github.io / documents / [Standard_Data_Analaysis – specifies data analysis (cleaning) methods
₽ main	AntoineBrunet Simple PRBEM website with pages, news, ar	 Standard_File_Format – specifies PRBEM flux file format (level 2)
>includes	Name	
> 📘 _layouts		
>posts	PRBEM_Response_Format.doc	
>sass	Standard_CountRate_File_Format.pdf	
 assets documents 	Standard_Data_Analysis.pdf	
PRBEM_Response_Format.doc	Standard_File_Format.pdf	
Standard_CountRate_File_Form		

Response file format

Top-level data in a response file:

- FORMAT_VERSION string providing the version X.Y.Z for the response file format
- CHANNEL NAMES an array of strings given channel names
- SPECIES an array of strings giving species names
- L UNIT length unit (e.g., 'cm')
- E_UNIT energy unit (e.g., 'MeV')
- REFERENCES list of paper references and websites (list of strings)

Default values of the channel-specific variables can be supplied as <u>top level</u> variables (without the leading period) or as species-specific variables (without a channel name or leading period)

Channel-specific data in a response file:

- DEAD TIME PER COUNT dead time per count, (sec)
- DEAD TYPE type of dead time (string, 'BLOCKING', or 'NONBLOCKING', 'AGGREGATE_BLOCKING', 'AGGREGATE_NONBLOCKING'') [At this time, description of AGGREGATE dead times is not fully defined because it involves some scheme of aggregating expected counts across multiple coupled data channels. For each coupled list of channels, there will be a variable called COUNTS_TOTAL_MAX – maximum counts across all channels (scalar)]
- COUNTS MAX -maximum counts the data channel
- CROSSCALIB cross calibration "fudge factor" (scalar)
- CROSSCALIB RMSE RMS error of the natural log of the counts for each channel, from calibration against a gold standard (scalar)
- TH TYPE (optional) type of THETA (polar angle) response
 - "TBL" table, requires TH_GRID and A(THETA)
 - "PINHOLE" delta function at THETA=0, requires G, BIDIRECTIONAL
 - "CYL_TELE" cylindrical telescope, requires R1, R2, D, BIDIRECTIONAL
 - "DISK" disk geometry, requires R1, BIDIRECTIONAL
 - "SLAB" slab geometry, requires W1, H1, BIDIRECTIONAL

- The response file provides all the information needed to compute the sensor response as a function of incident energy and sensor angles
- Global metadata such as data units, grids, supported species, channel names
- For each data channel, it provides the response to one or more species
- Common idealized channel types are supported (e.g., integral energy channel, cylindrical telescope geometry)
- 1-, 2-, and 3-D tables are used for nonanalytical aspects of response
- Format was originally CDF and .mat, but migrating to HDF5 because of its greater capacity and flexibility

There are several independent "extras" available in the PRBEM project at github

- csda_rpp single event effects modeling
- invlib spectral and pitch angle inversions
- kdtree fast multi-dimensional nearest neighbors lookup
- Istar fast L* using grid approach
- nnlib small neural network library
- opendc open diffusion code & utilities
- rfl sensor response function library
- var2cdf share variables between languages via CDF
- var2hdf5 share variables between languages via HDF5

RFL – Document (main branch)

Files	IRBEM-extras / rfl / 🖓		•••	
양 main · Q	💿 tpoiii updated HDF5 cell array variable name description 🚥 01744a0 · 4 years ago 🕚 History			
Q Go to file				IRBEM-6
> 📄 csda_rpp	Name	Last commit message	Last commit date	
> 📄 invlib	• •			💿 tpo
> 📄 kdtree	b doc	updated HDF5 cell array variable nam	4 years ago	
> 📄 İstar	🖿 matlab	fixed bug in ordering of cell array con	4 years ago	Name
> 📄 nnlib	README	new acknowledgement statement	13 years ago	
> 📄 opendc				Сно

- Response function library document describes the main equations for analytical models of sensor response, conversion between sensor and magnetic field angles, etc
- Has been used to provide sensor response for MagEIS, RPS, AeroCube-6, REACH, etc

IRBEM-extras / rfl / doc / 🖸		
() tpoiii updated HDF5 cell array variable nan		
Name		
🖿		
HDF5_FORMAT.TXT		
Response_Function_Library.docx		
Response_Function_Library.pdf		
Response_Function_Library.pdf		

RFL – Document, (main branch) continued

These quantities define the response function R below:

$$y \approx \lambda = \frac{1}{X_{cal}} \int_{0}^{\infty} \int_{0}^{2\pi\pi} \int_{0}^{\pi} R(E,\theta,\phi) \int_{t_1}^{t_2} j(E,\alpha(\theta,\phi,t),\beta(\theta,\phi,t)) dt \sin\theta d\theta d\phi dE$$

When energy and angular response are separable, we have:

$$y \approx \lambda = \frac{1}{X_{cal}} \int_{0}^{\infty} \varepsilon(E) \int_{0}^{2\pi\pi} \int_{0}^{2\pi\pi} A_{eff}(\theta, \phi) \int_{t_{1}}^{t_{2}} j(E, \alpha(\theta, \phi, t), \beta(\theta, \phi, t)) dt \sin \theta d\theta d\phi dE$$

We usually wish to compute weights h_{ijk} , such that the integral can be replaced by a sum: $y \approx \frac{2}{3} \approx \sum h_{ijk} i (E_i - G_i) = \sum h_{ijk} i$

$$y \approx \lambda \approx \sum_{ijk} h_{ijk} j(E_i, \alpha_j, \beta_k) = \sum_{ijk} h_{ijk} j_{ijk}$$

This is particularly helpful for inversion and data assimilation.

Manipulations to define h_{ijk} explicitly:

$$y \approx \lambda = \frac{1}{X_{cal}} \int_{0}^{\infty} \int_{-1}^{1} \int_{0}^{2\pi} j(E, \alpha, \beta) \left[\int_{t_1}^{t_2} R(E, \theta(\alpha, \beta, t), \phi(\alpha, \beta, t)) dt \right] d\beta d\cos \alpha dE$$
$$\approx \frac{1}{X_{cal}} \sum_{ijk} j_{ijk} \left[\int_{t_1}^{t_2} R(E_i, \theta(\alpha_j, \beta_k, t), \phi(\alpha_j, \beta_k, t)) dt \right] \Delta \beta_k \Delta \cos \alpha_j \Delta E_i$$
$$h_{ijk} = \frac{1}{X_{cal}} \left[\int_{t_1}^{t_2} R(E_i, \theta(\alpha_j, \beta_k, t), \phi(\alpha_j, \beta_k, t)) dt \right] \Delta \beta_k \Delta \cos \alpha_j \Delta E_i$$

- The response function describes the sensor response (effective area) as a function of energy and 2 sensor angles: θ (polar) and φ (azimuth)
- The file format allows various ways to specify this response function, from a 3-D table, to an idealized omnidirectional integral channel, and many approximations in between (e.g., two-element telescope)
- From a specified sensor response, it is possible to use the library to generate numerical integration weights as a 1-D, 2-D, or 3-D function/table in (*E*, θ, φ) or (*E*, α, β) systems
- These weights can be used and reused in spectral inversion, angular inversion, data assimilation, and bowtie analysis

RFL – Matlab (main branch)

Files	IRBEM-extras / rfl / 🕞		••••	
°¢ main → Q	() tpoiii updated HDF5	cell array variable name description 🚥 01744a0 · 4 year	rs ago 🕚 History	
 Q Go to file > csda_rpp 	Name	Last commit message	Last commit date	
> 📄 invlib	• •			
> 📄 kdtree	🖿 doc	updated HDF5 cell array variable nam	IDBEM-extrac /	rfl / matlab / r
> 📄 İstar	🖿 matlab	fixed bug in ordering of cell array con		
> 📄 nnlib		new acknowledgement statement	🔘 tpoiii fixed	bug in ordering of cell array contents on large cell arrays
> 📄 opendc		new acknowledgement statement		

- Matlab code is mature and on the main branch
- Functions are provided to compute the numerical integration weights (trapezoidal method) for integrals over (E, α, β, t) or (E, θ, φ)
- Multiple examples, e.g., ICO (rfl_make_ico.m), SAMPEX PET (rfl_make_sampex_pet.m)
- Bowtie analysis (rfl_bowtie.m)
- Rotations from (α, β) to/from (θ, φ) , Euler angles
- Load/save to CDF, HDF5, .mat response files
- Generate CSV energy response file for isotropic approximation

() tpoiii fixed bug in ordering of cell array contents on large cell arrays
Name
•
all_types.cdf
all_types.mat
🗅 ico.cdf
🗅 ico.mat
🗋 rfl_alphabeta2thetaphi.m
🗅 rfl_bc_init.m
۲۹ rfl bowtie.m

RFL – Matlab (main branch), applications

Figures from Claudpierre+2021 (ESM) https://doi.org/10.1007/s11214-021-00855-2, License CC BY 4.0

RFL – Python (main branch)

Files	IRBEM-extras / rfl / 💭	
ᢞ rfl-python-dev	tpoili improving ellipse implementation: more getters, local coords	
Q Go to file		RBEM-extras / rfl / python / ট
> 📄 csda_rpp	This branch is 43 commits ahead of main.	tpoiii improving ellipse implementation: more gette
> 📄 invlib	News	
> 📄 kdtree	Name	This branch is 43 commits ahead of main .
> 📄 İstar	• ••	
> 📄 nnlib	doc	Name
> 📄 opendc	🖿 matlab 👝	
Y 🧮 rfl		C dev notes tyt
> 📄 doc	python	
🗸 🪞 matlab	🗅 README	generic_telescope.py
Chall types off		🗅 rfl.py

- Response function types implemented as class heirarchy
- HDF5 supported
- Started on generic multi-element telescope
- Needs more examples / cookbook
- Needs bowtie analysis
- Needs testing

Summary

- The Response Function File Format provides a standard way to describe the response of a sensor to one or more species as a function of energy and sensor angles
- The Response Function Library provides tools for generating and manipulating response functions to perform scientific analyses such as bowtie analysis, spectral inversion, angular inversion, and data assimilation
 - Fully available in Matlab
 - In development in Python

Abstract

Abstract: The PRBEM response function file format can be used to describe the 1-D, 2-D, or 3-D response of a radiation sensor to one or more particle species. It supports idealized response functions for single-detector and dual-detector sensors in both rectangular and cylindrical geometries. It also supports look-up table responses produced by particle transport codes. The Response Function Library is originally a Matlab code, presently being converted to Python. The library is used for various manipulations of response functions. It includes transforms from pitch-angle/gyrophase coordinates to sensor angles. It provides calculation of numerical integration weights for spectral inversion, angular inversion, and 3-D data assimilation (measurement matrices). It also provides a bowtie analysis capability. The response file format standard and response function library code are community-maintained at https://github.com/PRBEM/IRBEM-extras/tree/main/rfl.