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Abstract—Cybersecurity is one of the most challenging aspects
in the modern Information and Communications Technology
(ICT) era, including space applications. The Consultative Com-
mittee for Space Data Systems (CCSDS) is issuing and updating
reports and standards to address this problem in the space sector.
It defined the format of secure frames to protect data with
different security features and the corresponding cryptographic
algorithms to be applied. Among them, the Galois/Counter Mode
(GCM) of the Advanced Encryption Standard (AES) is the only
one that constitutes a comprehensive solution for the simulta-
neous confidentiality, integrity, and authentication of data (i.e.
authenticated encryption). In this work, we present a configurable
and scalable architecture for implementing hardware AES-GCM
modules aimed at securing space applications compliant with the
CCSDS specifications. The proposed architecture was designed
using SystemVerilog and characterized in terms of trade-offs
between resource utilization and maximum frequency by analyz-
ing the implementation results on a space-grade KU060 FPGA.
Indeed, the configurability at the synthesis level of the proposed
architecture supports different approaches that can be exploited
to find the most efficient solution for the target application. For
this reason, we present two use cases for the integration of the
proposed security module in a transmitter for CCSDS-compliant
telemetry (TM) applications. The corresponding results confirm
the adaptability of our solution in different application scenarios
thanks to its configurability. In addition, they show that our
module offers long-term protection in terms of classical and post-
quantum security for modern space applications with a minimum
resource cost of 672 Configurable Logic Blocks (CLBs), i.e. 1.6%
of the FPGA resources.

Index Terms—Space security, CCSDS, SDLS, Authenticated
Encryption, AES-GCM, space-grade FPGA, KU060, Telemetry

I. INTRODUCTION

Last years saw a growing number of incidents in satellites
due to cyberattacks and violations of security [1] as shown
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in Fig. 1. This was the result of an increasing innovation in
malicious attacks according to the increasing innovation of
the New Space era started in the early 2000s. The widespread
adoption of the Internet in organizational IT practices offered
increasingly wider attack surfaces that also allowed indirect
attacks exploiting the satellite Internet connections to find valid
subscriber IP addresses to infect other servers. Indeed, the
authors of [2] demonstrated how cyberattacks can undermine
key features such as limited accessibility, attributable norms,
and environmental interdependence in the space domain. In
addition, actual statistics indicate that this trend could be
carried on in future decades [1].

To address this aspect, the Consultative Committee for
Space Data Systems (CCSDS) is issuing and updating a
series of reports and standards for the definition of se-

Fig. 1. Report on the space sector security [1]: number of operational satellites
(red line) vs. number of satellite incidents due to security attacks (blue bars).



curity requirements that can be applied, with appropriate
differences, to both the satellite-to-ground (downlink) and
ground-to-satellite (uplink) communication links. Indeed, re-
mote configurations/controls sent to spacecraft through the
uplink as telecommand (TC) packets need protection against
unauthorized tampering or forgery of the commands to prevent
damage to the payload, loss of vehicle control, etc. Therefore,
authentication and data integrity mechanisms are requested.
The downlink instead is used to transfer the scientific payload
data generated by the instruments from spacecraft to ground
stations as telemetry (TM) packets. They constitute a large
amount of confidential information so, in this case, also the
confidentiality protection must be included [1], [3]. In this
context, the CCSDS defined specific security protocols relying
on secure frames and the corresponding cryptographic algo-
rithms to build such secure frames. Among the cryptographic
algorithms approved by the CCSDS, the Galois/Counter Mode
(GCM) of the Advanced Encryption Standard (AES) is the
only one that supports a comprehensive solution for the
simultaneous confidentiality, integrity, and authentication of
data (i.e. authenticated encryption). For this reason, in this
work, we present a scalable and reconfigurable architecture at
the synthesis level that can be used to implement hardware
AES-GCM modules to satisfy the requirements of the target
application while minimizing resource utilization.

The remainder of the paper is organized as follows: Sec-
tion II describes the security specifications from the CCSDS
by focusing on the secure frame format and the associated
cryptographic algorithms; Section III illustrates the main
outline and the key points of the configurable architecture
we propose to implement hardware modules offering au-
thenticated encryption in space communications; Section IV
presents an implementation-aware analysis of the trade-offs in
terms of resource consumption, latency, maximum supported
frequency, and throughput; Section V presents two use cases
for the integration of the proposed module into a transmitter
compliant with the CCSDS specifications for TM applications;
finally, Section VI summarizes the main outcomes of this work
and illustrates the follow-ups of our research activity.

II. CCSDS SECURITY PROTOCOL AND ALGORITHMS

Based on the main security threats reported in [4], the
CCSDS emanated two standards for the security require-
ments of space applications: the standard 355.0-B [5] and the
standard 352.0-B [6]. The former specifies the methods for
applying cybersecurity services at the Space Data Link (SDL)
layer. In particular, it defines a new Secure Frame format
(Fig. 2) that includes the additional fields Security Header and
Security Trailer compared to the non-secure Transfer Frame.
The first field provides information on the security service
(cryptographic algorithm, key identifier, etc.), whereas the
second field constitutes the integrity proof of the frame. The
content of Frame Data can be modified (or not) according to
the security service. In the case of confidentiality protection,
the data are replaced with their corresponding encrypted ver-
sion (ciphertext), whereas they are left unchanged otherwise,

Fig. 2. Secure frame format defined by the CCSDS.

but anyway protected by authentication. The Secure Frame
constitutes the data unit of the secure protocols that are
defined at the same communication layer (Data Link) and
takes the name of Space Data Link Secure (SDLS) layer.
The SDLS layer operates transparently compared to the SDL
layer. Indeed, from the SDL layer point of view, the sequence
of Security Header, Frame Data, and Security Trailer is
interpreted as the typical non-secure Frame Data field. Then,
in case the SDLS protocol is applied, dedicated mechanisms
encode (decode) the frame before (after) the SDL layer upon
transmission (reception) of frames.

The CCSDS 352.0-B standard, on the other hand, speci-
fies which cryptographic algorithms are to be used to ap-
ply security services. Hash-based Message Authentication
Code (HMAC) [7], Cipher-based Message Authentication
Code (CMAC) [8], and Galois Message Authentication Code
(GMAC) [9] are authentication techniques that use a secret
key and underlying cryptographic primitives. In particular,
the use of a secret key enables the generation of a Message
Authentication Code (MAC) that will constitute the frame’s
Security Trailer to provide proof of the integrity of the Frame
Data content. Since the key is used to generate the MAC,
and it is assumed to be known only to authorized entities, the
Security Trailer also guarantees the authenticity of the Frame
Data content. The underlying cryptographic primitives of the
authentication techniques are, respectively, the Secure Hash
Algorithm 2 (SHA2) [10], the Advanced Encryption Standard
(AES) [11], and a 128-bit multiplication function over a
Galois field GF (2128). The CCSDS 352.0-B standard also
approves the usage of the Galois Counter Mode (GCM) [9]
that combines the CounTeR (CTR) mode [12] of the AES
algorithm and the GMAC algorithm to provide authenti-
cated encryption with associated data, i.e. the simultaneous
guarantee of confidentiality, integrity, and authentication. In
particular, the GMAC algorithm is an authentication-only
version of the GCM algorithm, whereas the latter also provides
confidentiality by encrypting the Frame Data content. All the
indicated algorithms that have been approved by the CCSDS
are standardized by the National Institute of Standards and
Technology (NIST).

We already presented some preliminary results on a hard-
ware implementation of the authenticated encryption tech-
niques (i.e. the AES-GCM) in [15]. However, we continued
and deepened our research on hardware modules for authen-
ticated encryption, developing an improved and configurable
architecture that allows for higher frequency and more efficient
modules in terms of throughput per resource utilization, which
we present in this work.



III. OUTLINE OF AUTHENTICATED ENCRYPTION
MODULES FOR SPACE SECURITY

The AES-GCM algorithm consists of two main func-
tions: the GCTR, for the data encryption/decryption, and the
GHASH, for the MAC generation/verification. The GCTR
function corresponds to the CTR mode of AES. By denoting
the encryption function of AES with EAES(), and the en-
cryption and decryption functions of CTR with ECTR() and
DCTR(), respectively, the encryption and decryption processes
of GCTR can be respectively expressed as:

Ci = ECTR(Pi, CBi,K) = Pi ⊕ EAES(CBi,K), (1)

Pi = DCTR(Ci, CBi,K) = Ci ⊕ EAES(CBi,K). (2)

In (1) and (2), Pi, Ci, CBi, and K represent, respectively, the
ith Plaintext block, the corresponding ith Ciphertext block, the
ith Counter Block, and the secret key. Pi and Ci are derived
by splitting the input Plaintext (P ), or the input Ciphertext
(C), in blocks of 128 bits. In the case the last Pi, or Ci,
is not a full 128-bit block, it does not require to be padded,
since the corresponding Ci, or Pi, is computed by XORing the
output of EAES(). In such an eventuality, they are used only
the most significant bits of EAES(CBi,K) that corresponds
to the bit length of the last Pi (or Ci) block. Instead, the
CBi blocks are 128-bit blocks generated by incrementing by
1 the initial Counter Block (CB0). This last one is derived
from an Initialization Vector (IV ) according to its length in
bits. In case the bit length of IV is 96, CB0 corresponds
to the concatenation of IV and the 32-bit binary vector
00000000000000000000000000000010. Otherwise, the calcu-
lation of CB0 is more expensive in terms of both resources
and time. For this reason, the usage of 96-bit IV s is the most
common solution, which is adopted also by the CSSDS [5].
The secret key K can have a bit length of 128, 192, or 256 bits,
and the CCSDS approved the usage of only 256-bit keys [5].

The GHASH function relies on the iterative multiplication
over a Galois field GF (2128) between a 128-bit hash key (H)
and a 128-bit data block. At each iteration, the input data block
is XORed with the previous product and multiplied by H, as
shown by (3).

Yi = (Yi−1 ⊕Xi) ·H (3)

In (3), Yi and Xi are, respectively, the 128-bit intermediate
output block and the 128-bit input data block. Assuming
len(X) is the bit length of the input data for GHASH, the
number of input data blocks is m = ⌈ len(X)

128 ⌉, and the input
sequence is formed by the Associated data (A), the ciphertext
(C), and the concatenation of [len(A)]64 and [len(C)]64. The
Associated data are auxiliary data that are not encrypted (using
the GCTR function) and are left unchanged in the Frame Data
field, whereas [len(A)]64 and [len(C)]64 are the representation
over 64 bits of the bit length of A and the bit length of C,
respectively. Hence, the last input block of GHASH (Xm) is
a 128-bit block. Instead, it may happen that splitting A and
C in 128-bit blocks the last corresponding slice has a length
lower than 128 bits: in such a case, the block must be padded

to 128 bits by filling it with 0s. According to (4), the hash
key H is derived from the secret key K using the encryption
function of AES.

H = EAES(0
128,K) (4)

In (4), 0128 is a 128-bit block made of all 0s. Finally, the
MAC is generated by encrypting the last intermediate result
from (3), Ym, through the GCTR encryption process in (1)
and using J0 as counter block. Therefore, the MAC can be
expressed as:

T = ECTR(Ym, J0,K) = Ym ⊕ EAES(J0,K). (5)

In (5), J0 corresponds to the concatenation of the IV and the
32-bit binary vector 00000000000000000000000000000001.

According to the CCSDS specifications [5], the AES-GCM
algorithm can be applied to all the protocols for TC, TM,
Advanced Orbiting Systems (AOS), and Unified Space Data
Link Protocol (USLP), by using 256-bit keys, 96-bit IV s,
and 128-bit MACs for all of them. Since the GCTR and
the GHASH functions are independent, we developed the
architecture of a configurable AES-GCM module starting
from the individual optimization of the computing units. We
used the SystemVerilog language, and, concerning the GCTR
unit, we started from the optimization of the underlying
AES core. Only the AES encryption function is required as
indicated by (1) and (2). The AES encryption function is
an iterative algorithm that repeats the transformations Sub-
Bytes, ShiftRows, MixColumns, and AddRoundKey for a certain
number of rounds. In the case of 256-bit keys (AES-256),
the number of rounds is 14, and the 256-bit key is used to
derive 128-bit round keys through a key expansion routine.
The 128-bit round keys are XORed with the data from the
MixColumns transformation through the AddRoundKey step.
Only in the last round the MixColumns step is skipped and
the round key is XORed with the data from the ShiftRows
step. According to the corresponding literature [16], [17], the
most diffused solution for hardware AES modules relies on
the single-inter-round-pipelined approach. It consists in the
implementation of a single round that is recycled through a
multiplexer to select the data from the input or the previous
round, and a round buffer to store the intermediate result
on each clock cycle. We adopted the same approach and, in
addition, we calibrated the insertion of the round buffer along
the round path to support the possibility of cascading multiple
AES stages for maximizing the throughput [16], [18]. Indeed,
although the latency (L) of such architecture is 14 clock cycles,
the throughput can be expressed as:

THR =
128 · fclk
CPB

. (6)

In (6), fclk is the clock frequency, whereas CPB is the Clock
Per Block factor that, similarly to the Clock Per Instruction
(CPI) figure of microprocessors, indicates the number of clock
cycles required to the AES core to perform the encryption of a
128-bit data block when the pipeline (the chain of AES stages)
is continuously fed. The case of a single AES stage is a corner



case in which CPB = L = 14. Table I shows the CPB values
for the corresponding number of stages (N ) supported by our
module. We selected all and only the numbers of stages that
increasingly lower the CPB according to (7).

CPB =

⌈
14

N

⌉
(7)

Thanks to the calibration of the path delays inside the round
path, it was possible to design a module whose critical delay
path is expected to not be unaffected by the cascading of
multiple stages. Moreover, each AES stage is provided with
its own independent Key Expansion Unit (KEU) to derive the
128-bit round keys. Since each KEU for AES-256 requires
two 128-bit registers and the number of round keys is 14, we
expect that for N = 7 and N = 14, the usage of a unique
and globally shared KEU that computes and stores all the
round keys in 14 corresponding 128-bit registers may give
benefits in terms of resource utilization. Hence, we developed
the corresponding SystemVerilog code to select the instance
of the KEUs local to each AES stage or the instance of the
global KEU shared among all the stages.

Lastly, we concentrated on the implementation of the S-box
module which is the core unit of the SubBytes transformation
and is the most expensive operation of the whole AES en-
cryption algorithm in terms of both resources and propagation
delay. Again according to the corresponding literature, the
usage of the approach denoted as Composite-Field Arithmetic
(CFA) is traditionally preferred to approaches based on Look-
Up Tables (LUTs). It is especially true in Application Specific
Integrated Circuits (ASICs) because the CFA approach allows
to reduce the problem of finding the multiplicative inverse of
a byte (the main S-box operation) to the problem of finding
the multiplicative inverse of a 4-bit vector or a 2-bit vector,
by significantly reducing the logical complexity of the S-box.
Anyway, more recent works [19] highlighted that since the
introduction of the LUT6 technology in the FPGA devices,
i.e. 6-input LUTs, this trend inverted, preferring the LUT-based
implementation of the S-box. Since our target was the space-
grade KU060 FPGA that features the LUT6 technology, we
developed both versions of the S-box to verify that aspect.
However, so as not to preclude the possibility of further
investigation and development even on different technologies
(standard-cell technologies or other FPGA devices), we made
available the selection of the S-box implementation through a
configuration parameter at the synthesis level.

TABLE I
SUPPORTED STAGE(S) NUMBER CONFIGURATION AND CORRESPONDING

CPB FOR AES-256 IN AES CORE.

Stage(s) number (N ) AES-256 CPB
1 14
2 7
3 5
4 4
5 3
7 2

14 1

Concerning the GHASH unit, it essentially consists in a
Galois multiplier from the hardware point of view. According
to the properties of the used Galois field, GF (2128), also the
integration of a reduction unit is necessary to perform the
modulo operation on the 255-bit output product and reduce it
to a 128-bit vector. Over the years the corresponding litera-
ture [20], [21] proposed the adoption of hardware architectures
based on the Karatsuba-Ofman Algorithm (KOA) as the most
efficient solution. It consists in splitting the input factors into
two halves and using them, and their combinations through
an XOR operation, to perform 3 different sub-multiplications.
Such 3 sub-multiplications have a lower hardware complexity
than the original one, therefore the instance of a unique
sub-multiplication unit that is buffered through a register to
perform the 3 sub-multiplications (in 3 corresponding clock
cycles) favors the reduction of resource consumption. A fourth
clock cycle is required to perform the modular reduction.
The complexity of the sub-multiplication unit can be further
reduced by iteratively applying the KOA, but without inserting
additional pipeline stages because, in that case, the advantages
in terms of maximum supported frequency would be not able
to compensate for the increased latency, resulting in an overall
lower throughput. The literature suggests also that the resource
complexity scales according to the iterative application of the
KOA, but only within a certain limit: after a saturation occurs.
For this reason, we developed a configurable GHASH unit
with the possibility to select the iteration degree of the KOA
for the multi-cycle multiplication unit. In addition, since the
AES core can have a CPB equal to 2 or 1 (Table I), we
developed also a single-cycle version of the multiplication
unit to equalize the latencies between the AES core and the
GHASH unit. This is not strictly necessary, as multiple multi-
cycle multiplication units can be used in parallel [21]. Using
2 (or 4) multi-cycle multiplication units the overall latency of
the GHASH module can be reduced, respectively, to 2 (or 1)
clock cycles. However, the usage of parallel multi-cycle multi-
plication units requires the pre-computation of some powers of
H , respectively, up to H2 and up to H4, and an equal number
of 128-bit registers to store them. Although the expected
maximum frequency of the single-cycle multiplication units is
lower than that of the corresponding multi-cycle counterpart,
such a solution could provide significant resource savings.

Finally, we merged the configurable AES core and GHASH
unit with additional logic resources to manage the operations
and synchronize the data flow from/to the input/output and the
sub-modules, and to pad the data blocks. The overall result was
the design of a highly configurable AES-GCM module, whose
main architecture is shown in Fig. 3. The main configuration
parameters concern the implementation approach of the S-box,
the number of cascadable stages (N ) in the AES core, the
implementation approach of the GHASH unit (single-cycle or
multi-cycle), the iteration degree of the KOA in the GHASH
multiplication unit(s), and the possibility to instantiate or
not the logic resources to perform the decryption/verification
process of AES-GCM at the receiver side (box MAC comp. in
3). Accordingly, the dashed boxes in Fig. 3 indicate optional



Fig. 3. Outline architecture of the proposed AES-GCM module.

modules. The AES-GCM module was tested through the simu-
lation of a testbench developed in SystemVerilog and including
the corresponding official test vectors of the GCM Validation
System (GCMVS) [22] released from the NIST through the
Cryptographic Algorithm Validation Program (CAVP).

IV. IMPLEMENTATION-AWARE TRADE-OFFS ANALYSIS

We performed an investigation analysis of the perfor-
mance of our AES-GCM module based on the imple-
mentation on a KU060 FPGA (in particular a device
XQRKU060-CNA1509-1M-m) for different combinations of
the configuration parameters illustrated in Section III. The
corresponding results are reported in Table II and Table III,
in which the resource utilization is expressed in Configurable
Logic Blocks (CLBs), CLB LUTs, and CLB Registers. A
CLB is the main Configurable logic element in the KU060
FPGA (and other FPGAs from Xilinx/AMD), and it includes
8 LUTs and 16 registers. Whether all the LUT and register
elements of a CLB are used or only a part is, that CLB is
occupied/consumed by the design implemented on the FPGA,
so the number of CLBs is the main indicator of resource
consumption.

The results in Table II and Table III confirmed all the
expectations. Specifically, Table II, through the experiments #1
and #2 (column Run), confirms that on LUT6-FPGA devices
the LUT-based implementation of the S-box offers solutions
with higher frequency (column Max. freq.) and lower resource
consumption (column CLB) than its CFA-based counterpart.
The experiments #3 and #4 instead confirm two other aspects.
First of all, comparing their maximum frequency against the
one of run #2, it can be noted that the cascading approach does
not affect the maximum frequency supported by the AES core.
Secondly, comparing the CLBs of run #3 against the ones of
run #4, it was confirmed that the global KEU allows saving
resources for a high number of AES stages (in particular about
the 14.2 % for the reported case of N = 14).

Table III, on the other hand, gives indications on the
GHASH module and its multiplication unit. In general, it can
be noted that the single-cycle version of the multiplication
unit offers lower frequency (column Max. freq.) and higher
resource consumption (column CLB(s)) than the multi-cycle

TABLE II
IMPLEMENTATION RESULTS OF THE AES CORE ON THE KU060 FPGA.

Max. freq. ResourcesRun N KEU S-box
version (MHz) CLB(s) CLB LUT(s) CLB Register(s)

#1 1 Local CFA 220 343 2093 484
#2 1 Local LUT 350 267 1733 441
#3 14 Local LUT 350 2473 13634 5719
#4 14 Global LUT 350 2121 11387 3964

TABLE III
IMPLEMENTATION RESULTS OF THE GHASH UNIT ON THE KU060 FPGA.

ResourcesGHASH
arch.

KOA
iter.

Max. freq.
(MHz) CLB(s) CLB

LUT(s)
CLB

Register(s)

Thr.
(Gbps)

Efficiency
(Mbps/CLB)

1 260 776 5574 383 33.28 42.89
2 250 656 4768 569 32 48.78
3 230 601 4394 839 29.44 48.99

Single
cycle

4 210 652 4856 1223 26.88 41.23
1 410 366 2222 879 13.12 35.85
2 355 295 1892 630 11.36 38.51
3 350 302 2027 846 11.2 37.09

Multi
cycle

4 320 334 2107 862 10.24 30.66

counterpart. In particular, any solution based on the single-
cycle approach features a frequency lower than the AES core
(with LUT-based S-boxes), hence it can constitute a limiting
factor for the whole AES-GCM module. The multi-cycle-
based solutions with a number of iterations of KOA equal
to 1, 2, and 3 (column KOA iter.) show instead a maximum
frequency higher than or equal to the one of the AES core,
hence they are the best candidate for the implementation of the
AES-GCM module. However, the single-cycle solutions show
a higher corresponding throughput (column Thr.) and effi-
ciency in terms of throughput per resource utilization (column
Efficiency) because of their reduced latency (1 clock cycle)
compared to the multi-cycle solutions latency (4 clock cycles).
This result indicates that, according to the requirements of
the target application, such as the frequency, the single-cycle
solutions may be preferred to multi-cycle solutions in the case
a reduced latency is required. For example, in the case of
N = 14 AES stages and the corresponding CPB = 1, the
multi-cycle-based approach would require at least 4 parallel
GHASH multiplication units, significantly exceeding the re-
source consumption of the single-cycle counterpart, even if
using the multi-cycle solution with the lowest resources cost.
Therefore, the usage of only one single-cycle multiplication
unit for the GHASH would respect the latency requirement
while minimizing the consumption of logic resources in that
case. In any case, both the categories of solutions show that
3 is the maximum number of iterations of the KOA that
gives benefits in terms of resource consumption; beyond, the
resource consumption rises again. This can be appreciated
for the single-cycle approach and the multi-cycle approach,
respectively, in Fig. 4 and Fig. 5.

A. Comparison with the State-of-the-Art

A fair comparison against other solutions from the state-
of-the-art was not quite possible, because the other solutions
proposed in the corresponding literature either use different
algorithms or are implemented on different FPGAs. In par-
ticular, the authors of [23] propose an alternative algorithm



Fig. 4. Resource consumption of single-cycle GHASH.

Fig. 5. Resource consumption of multi-cycle GHASH.

to AES-GCM: it is also aimed at authenticated encryption
and is based on AES-CTR and IV s, but the function for
generating the MAC is very different from GHASH, and the
corresponding resource consumption is quite low. In addition,
they use a commercial Virtex-6 FPGA, and the adoption of
an algorithm that does not perfectly match the AES-GCM
specifications makes their solution not fully compliant with
the CCSDS specifications. Only the authors of [24] present
an implementation of an authenticated cipher module that
conforms to the AES-GCM and CCSDS specifications on a
space-grade FPGA. However, they used a Virtex-4QV FPGA
from Xilinx/AMD (device XQR4VLX200) and did not provide
much detail about the architecture of their module. Based on
the authors’ explanation about the instance of 7 key expansion
modules, we configured our module for cascading 7 AES
stages accordingly and implemented it on the same FPGA.
We also configured our module for the instance of two parallel
multi-cycle GHASH multiplication units to support the 7-stage
AES core CPB (i.e., 2 clock cycles). The comparison results
are reported in Table IV, which shows that our solution
supports a higher frequency (Max. freq. column) at a lower
resource cost (expressed in slices). This results in a higher
supported throughput (Thr. column) and a higher efficiency
in terms of throughput per resource utilization (expressed in
Mbps/Slice). Finally, the resource usage of our solution also
includes dedicated logic resources for GHASH input padding,
while the authors of [24] do not explicitly mention this.

TABLE IV
COMPARISON WITH OTHER SOLUTIONS ON A VIRTEX-4QV FPGA.

Work Padding
unit?

Max. freq.
(MHz)

Resources
(Slices)

Thr.
(Gbps)

Efficiency
(Mbps/Slice)

[24] – 139.725 16393 8.94 0.546
This
work Yes 139.8 15530 8.95 0.576

V. USE CASES: SECURE CCSDS-COMPLIANT
TRANSMITTERS IN TM APPLICATIONS

As the final step, we implemented two use cases for TM
applications by integrating our AES-GCM module in the TM
transmitter presented in [25]. Such a transmitter is compliant
with the specifications of the standard CCSDS 131.2-B-1 [26]
and supports the dynamic change of the corresponding Mod-
ulation and Coding (ModCod) schemes. With a maximum
frequency of about 120 MHz, the maximum data rate is
slightly lower than 2.508 Gbps, and the maximum baud rate is
480 Mbaud. The utilized resources comprise 8887 CLBs and
2.082 Mbit of Block RAMs (BRAMs) on the KU060 FPGA.
The power consumption is 2.026 W. The baseline mode for
use with TM defined in [5] specifies that the Security Header
carries only the 16-bit Security Parameter Index (SPI) and the
96-bit IV (in that order). The SPI is used as an index to
retrieve information on the secret key K.

Since the maximum supported frequency of the TM trans-
mitter is 120 MHz, we analyzed two different use cases by
integrating the proposed AES-GCM module as a TM Security
Module. Its architecture is illustrated in Fig. 6, in which the
Input Data interface (I/F) multiplexes and byte-aligns the input
for AES-GCM module; the Data Synch Buffer buffers data to
be reported unmodified in the SDLS TM Transfer Frame (i.e.
the Associated data, A); the Output Data Handler multiplexes
and byte-aligns the data formatting the SDLS TM Transfer
Frames; lastly, the Parallel-In-Serial-Out (PISO) block, in the
Output Data I/F, adapts output data to required parallelism.

A. Single-clock Domain Solution

In this case, we adopted a fully synchronous solution by
using the same clock domain (120 MHz) for both the TM
Security Module and the TM transmission logic. According
to (6) and (7), the minimum number of AES stages required
to support the 2.508 Gbps data rate of the transmission module
is N = 3: indeed, the corresponding CPB is 5 (Table I), and
the throughput of the AES-related processes is 3.072 Gbps.
Since the CPB is greater than 4 clock cycles, we used the
multi-cycle version of the GHASH unit to minimize resource
consumption. In particular, we used the one with a KOA
iteration degree of 2. We also disabled the instance of the
logic resources dedicated to the decryption/verification process
that are not required in a transmission. The implementation
results are shown in Table V, in which TM transmission and
integration logic row includes the data related to the TM
transmission logic and the logic required for the integration
of the AES-GCM module. The results show that our solution
for the authenticated encryption module has a cost of about 3%



Fig. 6. Outline of the TM Security Module for the two use cases.

of the resources available on the KU060 FPGA and 214 mW
in terms of power consumption. They correspond, respectively,
to 10.6% and 8.6% of the resource utilization and power
consumption of the Secure TM Transmitter.

B. Multi-clock Domain Solution

In this case, we opted for using different clock domains for
the TM transmission logic and the TM Security Module to
maximize the throughput and minimize resource utilization
of our AES-GCM module. According to (6) and (7), our
security module requires a minimum clock frequency fclk
slightly lower than 275 MHz to support a 2.508 Gbps data
rate with a single AES stage (CPB = 14). Therefore,
we configured the proposed AES-GCM module accordingly
and integrated a synchronization interface between the two
clock domains. Specifically, we configured our module with
a single AES stage, the multi-cycle GHASH unit, and the
corresponding multiplier with a KOA degree of 2. Also in this
case, we disabled the instance of logic resources dedicated to
the decryption/verification process. The implementation results
are shown in Table VI, from which it can be seen that the
proposed module for authenticated encryption provides the
corresponding security services at a cost of about 1.6% of
the resources available on the KU060 FPGA and a power
consumption of 189 mW. With respect to the entire secure TM
transmitter, the resource utilization and power consumption
of the proposed solution are 6% and 7.6%, respectively. The
amount of resources consumed by the TM transmission and
integration logic (TM trasnm. and integration logic) increased
with respect to the first use case (Section V-A, Table V)
because synchronization mechanisms between the two clock

TABLE V
IMPLEMENTATION RESULTS OF THE SINGLE-CLOCK DOMAIN SECURE TM

TRANSMITTER USE CASE ON THE KU060 FPGA.

ResourcesModule Freq.
(MHz) CLB(s) BRAM(s)

Data rate
(Gbps)

Power
(W)

Proposed
AES-GCM 120 1235

(3%) 0 3.072 0.214

TM transmission
and integration logic 120 10387

(25%)
2.08 Mb
(6.4%) 2.508 2.276

Total – 11622
(28%)

2.08 Mb
(6.4%) – 2.490

domains were added. However, the total resource consumption
was lower than that of the previous solution, as was the power
consumption.

VI. CONCLUSIONS

In this work, we presented a configurable and scalable
architecture for implementing hardware AES-GCM modules
aimed at securing space applications compliant with the
CCSDS specifications. The proposed architecture was realized
as a configurable Intellectual Property (IP) core written in
SystemVerilog and compliant with the latest CCSDS security
requirements [5], [6]. The results of the implementation on a
space-grade KU060 FPGA were (and can be) used as a guide
to configure it to find the most efficient solution in terms of
resource utilization and throughput per resource, depending
on the frequency and/or throughput requirements of the target
application. For this reason, we presented two use cases on the
integration of the proposed module in a CCSDS-compliant
TM transmitter. The corresponding implementation results
on the KU060 FPGA showed that our module guarantees
comprehensive data security through authenticated encryption
with a minimum resource cost of 672 CLBs (1.6%). The usage
of 256-bit keys corresponds to a security level of 256 bits in
terms of classical security [27], and 128 bits in terms of post-
quantum security [28]. Hence our module is able to offer long-
term protection (beyond 2031) because the minimum accepted
security level is 128 bits [27]. We also performed a comparison
with other existing solutions from the literature, showing
that our proposal outperforms the competitors. Thanks to the
configurable hardware optimization integrated into the Sys-
temVerilog code, it has a higher operating frequency, a lower

TABLE VI
IMPLEMENTATION RESULTS OF THE MULTI-CLOCK DOMAIN SECURE TM

TRANSMITTER USE CASE ON THE KU060 FPGA.

ResourcesModule Freq.
(MHz) CLB(s) BRAM(s)

Data rate
(Gbps)

Power
(W)

Proposed
AES-GCM 275 672

(1.6%) 0 2.514 0.189

TM transmission
and integration logic 120 10537

(25.4%)
2.08 Mb
(6.4%) 2.508 2.286

Total – 11209
(27%)

2.08 Mb
(6.4%) – 2.475



resource consumption, and a higher throughput, resulting in an
overall higher efficiency in terms of throughput per resource
utilization. In addition, our solution integrates the padding
logic for the GHASH input.

The follow-ups of this work will include the integration
of the presented Secure TM Transmitter in a hardware-in-
the-loop TM Downlink Emulator [29] consisting of a mass
memory emulator, a channel emulator, and the hardware
implementations of the transmitter and the receiver for TM
protocol. The goal is to evaluate the impact of SDLS services
and protocols on TM downlink performances.
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