
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

A Preliminary Study of PQC Implementations for

Satellite Communication Networks

Shengbo Xu

Video Entertainment

Irdeto BV

Hoofddorp, The Netherlands

sxu@irdeto.com

Ana Vazquez Alonso

Video Entertainment

Irdeto BV

Hoofddorp, The Netherlands

ana.alonso@irdeto.com

Jacques Légaré

Core Technology

Irdeto

Ottawa, Canada

jacques.legare@irdeto.com

Phil Eisen

Core Technology

Irdeto

Ottawa, Canada

phil.eisen@irdeto.com

Abstract — Satellite communication plays an important role

in both civil and military applications and thus its security is

very critical. This paper studies secure boot and update

mechanisms for satellite systems and implements them based on

the NIST selected post-quantum crypto (PQC) algorithms on

RISC-V platforms. Also, the paper presents a preliminary

impact analysis of PQC algorithms on satellite communication

systems.

Keywords — satellite communication, cryptography, post-

quantum crypto (PQC), RISC-V

I. INTRODUCTION

It has long been known that satellite communication has
played a vital role in many specific applications since its birth
in 1957 [1], such as weather forecasting, earth observation,
satellite telephony and television, navigation and position, and
military communications, etc.

Nowadays satellite communication has also entered the
Internet era, helping Internet Service Providers (ISP) serve
people living in remote rural areas and passengers in airplanes.
SpaceX’s Starlink has built a large satellite constellation using
a low earth orbit to deliver broadband internet services
globally [2].

Furthermore, satellite’s larger coverage has also attracted
the mobile communication industry. The Third Generation
Partnership Project (3GPP) has initiated standardization
efforts to integrate Non-Terrestrial Networks (NTN) to
Terrestrial Networks (TN) such as 5G [3]. The latest models
of smart phones from some manufacturers have already
demonstrated their support of satellite connectivity.
According to 3GPP, there will be more promising features to
be expected with 5.5G / 6G networks.

Since satellite communication has so many applications in
our daily life, it is important to safeguard the security of
satellite communication networks. The Consultative
Committee for Space Data Systems (CCSDS) has published a
series of reports on security threats against space missions
since 2006. The 2022 revision of the CCSDS green book
summarizes the following types of threats [4]:

• Data modification

• Data interception

• Ground system loss

• Jamming

• Denial-of-service

• Replay

• Software threats

• Unauthorized access

• Tainted hardware components

• Supply chain threats

Recent research has confirmed the feasibility of some
threats mentioned above. In 2023, J. Willbold et al [5]
systematically analyzed the security of three real-world
satellite firmware images and found several security critical
vulnerabilities in them. Their research found modern in-orbit
satellites lack proper implementation of protection
mechanisms. They also conducted a survey with 19
professional satellite developers and most of the feedback
acknowledges their findings. J. Willbold presented their
research results at Black Hat USA, 2023, drawing a lot of
attention from the audience.

In 2023, D. Maurice-Michel posted a blog describing how
to hack an ESA experimental satellite. This attack could lead
to control of the satellite [6].

In 2022, L. Wouters demonstrated an attack on Starlink’s
user terminals at the Black Hat security conference in Las
Vegas, bypassing the security firmware authentication check
with a fault injection attack [7].

The above mentioned publications are very likely just the
tip of the iceberg as the large portion of satellite systems are
still closed, not open to security researchers as stated in [5].

A satellite is typically composed of multiple modules or
subsystems, such as attitude determination and control
system, communication module, command and data handling
system, payload data handling system, and power system. As
such, conventional thinking has been that a satellite system is
too complex to be hacked. However, a complex system very
likely contains software and/or hardware bugs. According to
information security research, there are 15 ~ 50 errors per
1000 lines of delivered code [8]. Although only a fraction of
errors have security implications, it is highly desirable to have
a secure update mechanism in satellite systems, allowing both
firmware and software update over-the-air (OTA). Secure
OTA not only helps patch security bugs but can upgrade
functionality in launched satellites. All of these would save in-
orbit satellites from potential attacks and extend their effective
lifetime.

This paper focuses on an implementation of a secure
update mechanism for satellite systems based on PQC

algorithms. The rest of this paper is outline as follows: Section
2 will give a brief introduction of secure boot design. Section
3 will introduce PQC algorithms. Section 4 will describe a
prototype implementation of secure boot based on PQC
algorithms on RISC-V platforms. Section 5 will analyze the
impact of PQC algorithms in satellite communication
protocols. Section 6 will conclude the paper.

II. SECURE BOOT

Secure boot is a security feature specified by various
standardization organizations, such as the Trusted Computing
Group (TCG) [9] and the Unified Extensible Firmware
Interface (UEFI) [10].

Figure 1 below shows a functional block diagram of a
generic computer system, with the focus on introducing secure
boot process. For clarity, this diagram might not represent the
current satellite systems.

Processor

Boot ROM SRAM

FLASH

Security Circuit

Non-volatile
Memory

Crypto
AcceleratorsPeripherals

Firmware

Bootloader

Operating System

Applications

RNG

DRAM

OTA Loader

Figure 1 – A Generic Computer System

It is worth noting that most of these functional blocks

shown in Figure 1 can be integrated in one system-on-chip

(SOC), with the exception of the large size of DRAM and/or

FLASH memory chips.

A. Secure Boot Process

After Power-On Reset (POR), the processor on the SOC
first executes code from Boot ROM, which initializes on-chip
hardware modules and peripherals and verifies the firmware
code stored in the external FLASH. If the verification is
successful, the firmware code is loaded into on-chip SRAM
for execution.

The firmware code normally implements low-level drivers
for the on-chip hardware modules and implements a crypto
library. It also calibrates the DDR bus interface in case there
is a DRAM chip connected to the SOC.

After the firmware is finished, the Boot ROM code loads
the bootloader code into SRAM or DRAM (depending on the
memory requirement) and verifies its signature. If the
verification is successful, the bootloader will be executed to
further load the operating system and applications into SRAM
or DRAM. The bootloader verifies the signature of the
operating system and the operating system verifies the
signatures of applications.

The above describes a normal secure boot process, in
which all signature verification is successful. If any code
module’s signature fails in verification, the processor will
enter an exception handling state.

The secure boot process starts from a trusted Boot ROM
code (which is masked in chip hardware by manufacturers and
thus cannot be changed) and checks the code stored in external

FLASH step by step to ensure all the executed code is from
the designated developers and has not been modified. This is
the so-called trust chain and the Boot ROM is the root of trust.

B. Secure Update Process

In case a partial or a full update of FLASH code is needed,

a notification message or control command will be sent to the

receiving device (in this case, the satellite) to get system

ready for a firmware and/or software update (for simplicity

we call this a code update hereafter).

For code update, the OTA loader needs to be loaded from

FLASH into working memory. Before execution, the Boot

ROM verifies the OTA loader signature in the same way as

described in the secure boot process. Only if the verification

is successful does the processor start the OTA loader,

downloading the new code via OTA download protocol

(depending on the employed network technology).

To protect its authenticity and secrecy, the new code is

normally signed and encrypted. After the download is

completed, the OTA loader verifies the new code’s signature

and decrypts the downloaded code. Once the decryption and

verification of new code is successful, the OTA loader writes

it into FLASH (to replace the old software or store it in a new

separate section and mark the previous code partition as

backup) and updates the code version in non-volatile

memory.

After update, the OTA loader may trigger a hardware

reset to restart the secure boot process (as described in the

previous section) to run the new code.

C. Cryptographic Algorithms

As described above, secure boot and update processes

both employ digital signature schemes (and hash functions)

to verify the authenticity of external keys and codes loaded

from external memory into internal memory for execution or

verify the authenticity of the new downloaded code via OTA.

Currently, the conventional digital signature schemes

(such as RSA-PSS [11] and EC-DSA [12]) are utilized in

code authentication. Because satellites are typically in

operation for many years, it is important that the algorithms

used stay unbroken for a long time. In recent years, a new

risk has developed with the advent of quantum computers. If

a large enough quantum computer could be built, Shor's

algorithm [13] would render approaches based on factoring

or discrete log (including RSA and ECC) insecure. To

mitigate the potential risks from quantum computers,

quantum-safe algorithms (also called post-quantum crypto –

PQC) shall be used in conjunction with the above mentioned

conventional algorithms (to create hybrid signatures, for

example).

The recently introduced PQC algorithms could introduce
new challenges to satellite systems due to the following
reasons: 1) the size of keys and/or ciphertexts/signatures is
much larger than conventional asymmetric ciphers (see the
Section 3); 2) the operation of PQC algorithms is also more
complex than conventional ones; 3) there is no clear best
choice of PQC algorithm due to the concern of future attacks
on those new ciphers. The rest of this paper will discuss the
implementation of stateless PQC signature schemes and their
impact on satellite systems. The stateful LMS and XMSS

schemes [25] are not discussed in this paper as they require
careful state management and thus could cause operational
complexity [26].

III. PQC ALGORITHMS

The NIST PQC initiative aims to select good candidates in

two different categories: signature algorithms, and key

encapsulation mechanisms (KEMs). These two categories

encompass most typical uses for asymmetric cryptographic

algorithms. In this paper, we will focus only on signature

algorithms as used in the secure boot and update processes.

As part of the PQC initiative, 23 submissions were evaluated

by the cryptographic community, and eventually 3 signature

schemes were chosen by NIST [14] – Dilithium, FALCON

and SPHINCS+. Each of these algorithms uses a unique

approach that is quite different from classical asymmetric

ciphers.

A. Brief description

1) Dilithium

Dilithium [15] is an algorithm in the CRYSTALS

(CRYptographic SuiTe of Algebraic LatticeS) family. As the

name implies, this algorithm leverages lattice-based

cryptography, in particular the Module Shortest Integer

Solution (M-SIS) problem. The math is done over a finite

field polynomial ring of degree 256. The design goals were

conservative security, simplicity, and a small key and

signature size.

2) FALCON

FALCON [16] is also a lattice-based cryptographic

algorithm, this time based on the NTRU problem. The design

goals were compactness and efficiency.

3) SPHINCS+

SPHINCS+ [17] is a hash-based algorithm, based on

fairly old schemes such as Merkle trees and Winternitz

signature schemes. Its security is based on the security of the

underlying hash function. The design goals were to create a

stateless algorithm based on a well-understood problem.

B. Algorithm Variations and NIST Security Levels

To evaluate the security of all PQC candidate algorithms,

NIST has established a set of security levels [18]. The table

below summarizes the PQC signature algorithms and their

security levels.
Table 1 – PQC Algorithms Security Levels

NIST Security
Level

Reference PQC Algorithm

1 Brute-force search

for AES-128 key

FALCON LogN9,
SPHINCS+SHA256 128f/s

2 Random search for

collision in SHA3-
256

Dilithium2

3 Brute-force search

for AES-192 key
Dilithium3,

SPHINCS+SHA256 192f/s

5 Brute-force search

for AES-256 key
Dilithium5,

FALCONLogN10,
SPHINCS+SHA256 256f/s

C. Key and Signature Size

To present an overall implementation impact, the public

key size, private key size, and signature size of Dilithium,

FALCON, and SPHINCS+ algorithms are summarized in the

Table 2 below.

Table 2 – Key and Signature sizes of FALCON, Dilithium, and

SPHINCS+

Algorithm Public key size
(bytes)

Private key size
(bytes)

Signature size
(bytes)

Dilithium
2

1312

2528 2420

Dilithium
3

1952

4000 3293

Dilithium

5

2592 4864 4595

FALCON

LogN9

897

1281 657

FALCON

LogN10

1793

2561 1271

SPHINCS
+128s

32 64 7856

SPHINCS

+192s

48 96 16224

SPHINCS

+256s

64 128 29792

IV. PQC IMPLEMENTATIONS

In terms of performance, the NIST submissions have

benchmarks but they are inconsistent. This paper attempts to

benchmark the three signature algorithms in the exact same

environment.

A. Hardware Platforms

As a proof of concept, we selected RISC-V processor

platforms since its instruction set is open source and we are

participating in the EU TRISTAN (Together for RISc-v

Technology and ApplicatioNs) project [19].

1) ESP32C3 platform [20]

This platform has the following features:

• 32-bit RISC-V single-core processor, up to 160

MHz

• 384 KB ROM

• 400 KB SRAM (16 KB for cache)

2) Arty7 100T platform [21]

This platform integrates Altera FPGA with an

implementation of the FreNox RISC-V processor provided

by Technolution [22].

• 32-bit RISC-V single-core processor, up to 450

MHz

• 10KB SRAM

• 16MB FLASH

• 256MB DRAM

B. Implementation of PQC Algorithms

On the above two platforms, we used the reference code

from FALCON, Dilithium and SPHINCS+ submitters to

implement the secure boot and secure update functions as

described in Section 2.

The first version of the implementation uses the minimal

subset of the ISA (rv32im), which is easy for porting onto any

RISC-V processors. Furthermore, our implementation only

focuses on the signature verification function of those PQC

signature schemes introduced in Section 3 as the secure boot

and secure update only need signature verification functions.

The public key used for signature verification is hard-coded.

For this first reference implementation, we do not include

any hardware acceleration. We will further investigate the

possibility of optimizing PQC implementations by using

some hardware accelerators such as floating-point

instructions, big number hardware acceleration modules

and/or certain crypto hardware accelerators like hash

hardware. We are in discussions with Technolution regarding

which hardware accelerators will be supported in new FPGA.

This initial implementation does not include any

hardware interrupts, making the execution linear and

predictable.

C. Measurements

Table 3 shows the code size and data size of our

implementation of FALCON, Dilithium and SPHINCS+

signature verification functions.

Table 3 – Code and Data Size of FALCON, Dilithium and

SPHINCS+s Implementations

Algorithm Text

(Bytes)

Data

(Bytes)

Read-

only

Data
(Bytes)

Total

(Bytes)

Dilithium 2 27260 3744

1608

32612

Dilithium 3 27040

5264

1608

33912

Dilithium 5 26964 7200 1608 35772

FALCON LogN9 16040 1568 4768

22376

FALCON LogN10 16040 3088 4768

23896

SPHINCS+128s 9236 7904 764 17904

SPHINCS+192s 11540 16288 1512 29340

SPHINCS+256s 11540 29872 1512 42924

Figure 2 and 3 below show the execution time of a single

signature verification over a payload of 1024-Byte code using

FALCON, Dilithium and SPHINCS+s algorithms with

different NIST security levels on Arty A7 100T and

ESP32C3 platforms, respectively.

Figure 2 – FALCON, Dilithium and SPHINCS+s signature

verification time on Arty 100T platform

Figure 3 – FALCON, Dilithium and SPHINCS+s signature

verification time on ESP32C3 platform

D. Comparisons

Table 3 manifests the range of memory footprints for the

algorithms considered in this study: SPHINCS+128s and

SPHINCS+256s have the smallest and largest footprints,

respectively. Of the remaining algorithms, FALCON variants

have the smallest footprints. Meanwhile, Figures 2 and 3

show that the time performance of all FALCON variants is

much better than Dilithium and SPHINCS+s variants (though

some variants do not have the same security level).

To the best of our knowledge, PQC benchmarking has

been done mostly on Intel x86 and ARM Cortex-M3 and/or

M4 processors [27]. This hinders a comparison with our

RISC-V implementation.

Additionally, most (if not all) implementation of PQC

algorithms on RISC-V are based on extended instruction set

and/or take advantage of hardware acceleration [28].

Note that in our initial implementations, we have disabled

all hardware interrupts, ensuring the execution is linear and

predictable.

V. IMPACT ON SATELLITE SYSTEMS

European Space Research and Technology Center has

published SAVOIR (Space Avionics Open Interface

Architecture) Flight Computer Initialization Sequence

Generic Specification [23], which describes ESA

requirements for the initialization of a typical spacecraft’s on-

board computer. We have analyzed the Nominal Sequence

(described in Section 4.1.1 of [23]). The Nominal Sequence

only contains two software modules: Boot SW and

Application SW. The secure boot mechanism described in

Section 2 of this paper has additional software modules such

as boot loader and OTA loader. Implementing the secure boot

and secure update functions (described in Section 2 of this

paper) requires adding steps and/or modifying certain steps

in the Nominal Sequence (described in Section 4.1.1 of [24]).

As described in Section 4, the implementation of secure

boot based on PQC signature schemes requires roughly 30K

bytes ROM memory for code (normally does not take much

hardware resource) and roughly 10K bytes of data memory in

SRAM (which might be significant in satellite systems). As

for the signature verification time, it varies depending on the

PQC algorithm chosen. FALCON (level 5) takes about 30

milliseconds, whilst Dilithium (level 5) takes 360

milliseconds on the Arty A7 100T platform, a platform which

is intended for satellite systems. Evidently, adding a PQC

based secure boot mechanism will increase the boot time of

satellite systems, although the impact is acceptable as secure

boot runs at the very beginning of boot sequence after power

on and it is once-off till the next power on cycle.

Although the use of PQC algorithms leads to increased

signature sizes, the impact on the transmission of signed code

from a ground station to an in-orbit satellite is minimal: the

packet format definition of the Packet Utilization Standard

(PUS) [24] is designed to be flexible enough to transport

variable length data. For very large transmissions (larger than

64K bytes), multiple packets are used. Using the PUS service

in this way, the larger sizes of PQC-signed code are not an

impediment, although of course the larger size of a typical

PQC signature would take more time to transmit.

Last but not least, we should also consider the support for

crypto agility in deployment. Our current implementation

only supports one algorithm at a time, since the PQC

algorithm is fixed at compilation. This might be acceptable in

cases where the computer in the satellite system can be fully

updated in-orbit. This is possible with an FPGA solution, in

which the Boot ROM code is included in the FPGA bit file.

If the FPGA option is not available, having multiple PQC

algorithms pre-integrated in the Boot ROM is an option.

VI. CONCLUSION AND FUTURE WORK

This paper presents a prototype of PQC algorithms based

secure boot and secure update for satellite communication

systems. For the purpose of secure boot and secure update,

we do not see any blocking issues with implementing PQC-

based secure boot and secure update mechanisms for satellite

systems with the assumption that certain extensions or

modifications of the existing boot sequence [23] and

additional hardware resources are possible.

The results presented in this paper are our first-year

research results for the TRISTAN project. During the

remaining time of this project, we will continue to work with

our partners on 1) optimizing the implementation of PQC

algorithms and 2) continuing to follow up NIST’s fourth

round of PQC selection (which may add new PQC signature

algorithms).

ACKNOWLEDGMENT

This work is sponsored partly by EU TRISTAN project
(ID number 101095947). We would like to thank Tingting
Lin, Xiaoxi Dong, Umut Demirci, Raghav Iyer, Md. Abu
Faisal for their helpful discussions, as well as the
Technolution team for their support. We would also thank
anonymous reviewers for their constructive comments.

REFERENCES

[1] O. Kodheli, E. Lagunas, N. Maturo, S. K. Sharma, B. Shankar, J. F. M.
Montoya, J. C. M. Duncan, D. Spano, S. Chatzinotas, S. Kisseleff et
al., “Satellite Communications in the New Space Era: A Survey and
Future Challenges,” IEEE Communications Surveys & Tutorials, 2020.

[2] Starlink, https://www.starlink.com/technology

[3] Technical Specification Group Radio Access Network; Study on New
Radio (NR) to Suppoer Non-Terrestrial Networks (Release 15),
Standard 3GPP TR 38.811, Technical Report, 2020.

[4] The Consultative Committee for Space Data Systems (CCSDS),
Security threats against space missions; CCSDS 350.1-G-3, Feburary
2022.

[5] J. Willbold, M. Schloegel, M. Vögele, M. Gerhardt, T. Holz, and A.
Abbasi, “Space Odyseey: An experimental Software Security Analysis
of Satellites”, IEEE Symposium on Security and Privacy (SP), 2023.

[6] Didelot Maurice-Michel, How to hack an ESA’s experimental satellite.
https://www.deadf00d.com/post/how-to-hack-an-esa-experimental-
satellite.html

[7] L. Wouters, “Glitched on Earth by Humans: A Black-Box Security
Evaluation of the SpaceX Starlink User Terminal", Black Hat USA
2022, Las Vegas, US, 2022
(https://www.youtube.com/watch?v=NXqLMmGwJm0)

[8] [online] https://infosectests.com/cissp-study-references/domain-8-
app-dev/code-defects/

[9] Trusted Computing Group, “Trusted Platform Module Library
Specification, Famliy 2.0”, Revision 1.59, November 2019.

[10] Unified Extensible Firmware Interface (UEFI) Specification, Version
2.9, March 2021.

[11] IETF, RFC 8017, PKCS#1: RSA Cryptography Specifications, Version
2.2, November 2016.

[12] IETF, RFC 6979, Deterministic Usage of the Digital Signature
Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm
(ECDSA), August 2013.

[13] P.W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer”, SIAM Rev., vol. 41, No.
2, pp.303-332, 1999.

[14] NIST IR 8413, Status report on the third round of the NIST Post-
Quantum Cryptography Standardization Process, July 2022.

[15] Dilithium website, https://www.pq-crystals.org/dilithium/

[16] FALCON website, https://FALCON-sign.info/

[17] SPHINCS+ website, https://sphincs.org/

[18] PQC Security evaluation criteria, https://csrc.nist.gov/projects/post-
quantum-cryptography/post-quantum-cryptography-
standardization/evaluation-criteria/security-(evaluation-criteria)

[19] TRISTAN project, https://tristan-project.eu/.

[20] ESP32C3 platform,
https://www.espressif.com/en/products/socs/esp32-c3

[21] Arty7 100T platform, https://digilent.com/shop/arty-a7-100t-artix-7-
fpga-development-board/

[22] Technolotion FreNox RISC-V Softcore,
https://www.technolution.com/advance/frenox/?noredirect=en-GB.

https://www.deadf00d.com/post/how-to-hack-an-esa-experimental-satellite.html
https://www.deadf00d.com/post/how-to-hack-an-esa-experimental-satellite.html
https://infosectests.com/cissp-study-references/domain-8-app-dev/code-defects/
https://infosectests.com/cissp-study-references/domain-8-app-dev/code-defects/
https://www.espressif.com/en/products/socs/esp32-c3
https://digilent.com/shop/arty-a7-100t-artix-7-fpga-development-board/
https://digilent.com/shop/arty-a7-100t-artix-7-fpga-development-board/
https://www.technolution.com/advance/frenox/?noredirect=en-GB

[23] ESA-ESTEC, SAVOIR Flight Computer Initialisation Sequence
Generic Specification, Revision 2, Issed on November 18, 2021.

[24] ESA-ESTEC, Space engineering – Telemetry and telecommand packet
utilization, ECSS-E-ST-70-41C, April 15, 2016.

[25] NIST SP 800-208, Recommendation for stateful hash-based signature
schemes. https://doi.org/10.6028/NIST.SP.800-208

[26] T. Wiggers, K. Bashiri, S. Kolbl, J. Goodman and S. Kousidis, Hash-
based signatures: state and backup management.
https://www.ietf.org/archive/id/draft-wiggers-hbs-state-00.html

[27] M.J. Kannwischer, J. Rijneveld, P. Schwabe, K. Sto_elen, pqm4:
Testing and benchmarking NIST PQC on ARM Cortex-M4. Workshop

Record of the Second NIST PQC Standardization Conference (2019),
https://eprint.iacr.org/2019/844

[28] P. Nannipieri, S. Di Matteo, L. Zulberti, F. Albicocchi, S. Saponara,
and L. Fanucci, A RISC-V Post Quantum Cryptography Instruction Set
Extension for Number Theoretic Transform to Speed-Up CRYSTALS
Algorithms, IEEE Access, Volume 9, 2021. PP: 150798 – 150808,
DOI: 10.1109/ACCESS.2021.3126208

https://doi.org/10.6028/NIST.SP.800-208
https://www.ietf.org/archive/id/draft-wiggers-hbs-state-00.html
https://eprint.iacr.org/2019/844

