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Abstract — Satellite communication plays an important role 

in both civil and military applications and thus its security is 

very critical. This paper studies secure boot and update 

mechanisms for satellite systems and implements them based on 

the NIST selected post-quantum crypto (PQC) algorithms on 

RISC-V platforms. Also, the paper presents a preliminary 

impact analysis of PQC algorithms on satellite communication 

systems.    
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I. INTRODUCTION  

It has long been known that satellite communication has 
played a vital role in many specific applications since its birth 
in 1957 [1], such as weather forecasting, earth observation, 
satellite telephony and television, navigation and position, and 
military communications, etc.  

Nowadays satellite communication has also entered the 
Internet era, helping Internet Service Providers (ISP) serve 
people living in remote rural areas and passengers in airplanes. 
SpaceX’s Starlink has built a large satellite constellation using 
a low earth orbit to deliver broadband internet services 
globally [2].  

Furthermore, satellite’s larger coverage has also attracted 
the mobile communication industry. The Third Generation 
Partnership Project (3GPP) has initiated standardization 
efforts to integrate Non-Terrestrial Networks (NTN) to 
Terrestrial Networks (TN) such as 5G [3]. The latest models 
of smart phones from some manufacturers have already 
demonstrated their support of satellite connectivity. 
According to 3GPP, there will be more promising features to 
be expected with 5.5G / 6G networks.  

Since satellite communication has so many applications in 
our daily life, it is important to safeguard the security of 
satellite communication networks. The Consultative 
Committee for Space Data Systems (CCSDS) has published a 
series of reports on security threats against space missions 
since 2006. The 2022 revision of the CCSDS green book 
summarizes the following types of threats [4]:  

• Data modification 

• Data interception 

• Ground system loss 

• Jamming 

• Denial-of-service 

• Replay 

• Software threats 

• Unauthorized access 

• Tainted hardware components 

• Supply chain threats  

Recent research has confirmed the feasibility of some 
threats mentioned above. In 2023, J. Willbold et al [5] 
systematically analyzed the security of three real-world 
satellite firmware images and found several security critical 
vulnerabilities in them. Their research found modern in-orbit 
satellites lack proper implementation of protection 
mechanisms. They also conducted a survey with 19 
professional satellite developers and most of the feedback 
acknowledges their findings. J. Willbold presented their 
research results at Black Hat USA, 2023, drawing a lot of 
attention from the audience. 

In 2023, D. Maurice-Michel posted a blog describing how 
to hack an ESA experimental satellite. This attack could lead 
to control of the satellite [6].  

In 2022, L. Wouters demonstrated an attack on Starlink’s 
user terminals at the Black Hat security conference in Las 
Vegas, bypassing the security firmware authentication check 
with a fault injection attack [7].  

The above mentioned publications are very likely just the 
tip of the iceberg as the large portion of satellite systems are 
still closed, not open to security researchers as stated in [5].  

A satellite is typically composed of multiple modules or 
subsystems, such as attitude determination and control 
system, communication module, command and data handling 
system, payload data handling system, and power system. As 
such, conventional thinking has been that a satellite system is 
too complex to be hacked.  However, a complex system very 
likely contains software and/or hardware bugs. According to 
information security research, there are 15 ~ 50 errors per 
1000 lines of delivered code [8]. Although only a fraction of 
errors have security implications, it is highly desirable to have 
a secure update mechanism in satellite systems, allowing both 
firmware and software update over-the-air (OTA). Secure 
OTA not only helps patch security bugs but can upgrade 
functionality in launched satellites. All of these would save in-
orbit satellites from potential attacks and extend their effective 
lifetime.  

This paper focuses on an implementation of a secure 
update mechanism for satellite systems based on PQC 



algorithms. The rest of this paper is outline as follows: Section 
2 will give a brief introduction of secure boot design. Section 
3 will introduce PQC algorithms. Section 4 will describe a 
prototype implementation of secure boot based on PQC 
algorithms on RISC-V platforms. Section 5 will analyze the 
impact of PQC algorithms in satellite communication 
protocols. Section 6 will conclude the paper.   

II. SECURE BOOT  

Secure boot is a security feature specified by various 
standardization organizations, such as the Trusted Computing 
Group (TCG) [9] and the Unified Extensible Firmware 
Interface (UEFI) [10].  

Figure 1 below shows a functional block diagram of a 
generic computer system, with the focus on introducing secure 
boot process. For clarity, this diagram might not represent the 
current satellite systems.    
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Figure 1 – A Generic Computer System 

It is worth noting that most of these functional blocks 

shown in Figure 1 can be integrated in one system-on-chip 

(SOC), with the exception of the large size of DRAM and/or 

FLASH memory chips. 

A. Secure Boot Process 

After Power-On Reset (POR), the processor on the SOC 
first executes code from Boot ROM, which initializes on-chip 
hardware modules and peripherals and verifies the firmware 
code stored in the external FLASH. If the verification is 
successful, the firmware code is loaded into on-chip SRAM 
for execution.  

The firmware code normally implements low-level drivers 
for the on-chip hardware modules and implements a crypto 
library. It also calibrates the DDR bus interface in case there 
is a DRAM chip connected to the SOC.  

After the firmware is finished, the Boot ROM code loads 
the bootloader code into SRAM or DRAM (depending on the 
memory requirement) and verifies its signature. If the 
verification is successful, the bootloader will be executed to 
further load the operating system and applications into SRAM 
or DRAM. The bootloader verifies the signature of the 
operating system and the operating system verifies the 
signatures of applications.  

The above describes a normal secure boot process, in 
which all signature verification is successful. If any code 
module’s signature fails in verification, the processor will 
enter an exception handling state.   

The secure boot process starts from a trusted Boot ROM 
code (which is masked in chip hardware by manufacturers and 
thus cannot be changed) and checks the code stored in external 

FLASH step by step to ensure all the executed code is from 
the designated developers and has not been modified. This is 
the so-called trust chain and the Boot ROM is the root of trust. 

B. Secure Update Process 

In case a partial or a full update of FLASH code is needed, 

a notification message or control command will be sent to the 

receiving device (in this case, the satellite) to get system 

ready for a firmware and/or software update (for simplicity 

we call this a code update hereafter).  

For code update, the OTA loader needs to be loaded from 

FLASH into working memory. Before execution, the Boot 

ROM verifies the OTA loader signature in the same way as 

described in the secure boot process. Only if the verification 

is successful does the processor start the OTA loader, 

downloading the new code via OTA download protocol 

(depending on the employed network technology).  

To protect its authenticity and secrecy, the new code is 

normally signed and encrypted. After the download is 

completed, the OTA loader verifies the new code’s signature 

and decrypts the downloaded code. Once the decryption and 

verification of new code is successful, the OTA loader writes 

it into FLASH (to replace the old software or store it in a new 

separate section and mark the previous code partition as 

backup) and updates the code version in non-volatile 

memory.  

After update, the OTA loader may trigger a hardware 

reset to restart the secure boot process (as described in the 

previous section) to run the new code.  

C. Cryptographic Algorithms 

As described above, secure boot and update processes 

both employ digital signature schemes (and hash functions) 

to verify the authenticity of external keys and codes loaded 

from external memory into internal memory for execution or 

verify the authenticity of the new downloaded code via OTA. 

Currently, the conventional digital signature schemes 

(such as RSA-PSS [11] and EC-DSA [12]) are utilized in 

code authentication. Because satellites are typically in 

operation for many years, it is important that the algorithms 

used stay unbroken for a long time.  In recent years, a new 

risk has developed with the advent of quantum computers.  If 

a large enough quantum computer could be built, Shor's 

algorithm [13] would render approaches based on factoring 

or discrete log (including RSA and ECC) insecure.  To 

mitigate the potential risks from quantum computers, 

quantum-safe algorithms (also called post-quantum crypto – 

PQC) shall be used in conjunction with the above mentioned 

conventional algorithms (to create hybrid signatures, for 

example).  

The recently introduced PQC algorithms could introduce 
new challenges to satellite systems due to the following 
reasons: 1) the size of keys and/or ciphertexts/signatures is 
much larger than conventional asymmetric ciphers (see the 
Section 3); 2) the operation of PQC algorithms is also more 
complex than conventional ones; 3) there is no clear best 
choice of PQC algorithm due to the concern of future attacks 
on those new ciphers. The rest of this paper will discuss the 
implementation of stateless PQC signature schemes and their 
impact on satellite systems. The stateful LMS and XMSS 



schemes [25] are not discussed in this paper as they require 
careful state management and thus could cause operational 
complexity [26].     

III. PQC ALGORITHMS 

The NIST PQC initiative aims to select good candidates in 

two different categories: signature algorithms, and key 

encapsulation mechanisms (KEMs).  These two categories 

encompass most typical uses for asymmetric cryptographic 

algorithms.  In this paper, we will focus only on signature 

algorithms as used in the secure boot and update processes. 

 

As part of the PQC initiative, 23 submissions were evaluated 

by the cryptographic community, and eventually 3 signature 

schemes were chosen by NIST [14] – Dilithium, FALCON 

and SPHINCS+. Each of these algorithms uses a unique 

approach that is quite different from classical asymmetric 

ciphers. 

 

A. Brief description 

1) Dilithium 

Dilithium [15] is an algorithm in the CRYSTALS 

(CRYptographic SuiTe of Algebraic LatticeS) family.  As the 

name implies, this algorithm leverages lattice-based 

cryptography, in particular the Module Shortest Integer 

Solution (M-SIS) problem.  The math is done over a finite 

field polynomial ring of degree 256.  The design goals were 

conservative security, simplicity, and a small key and 

signature size. 

 

2) FALCON 

FALCON [16] is also a lattice-based cryptographic 

algorithm, this time based on the NTRU problem.  The design 

goals were compactness and efficiency. 

 

3) SPHINCS+ 

SPHINCS+ [17] is a hash-based algorithm, based on 

fairly old schemes such as Merkle trees and Winternitz 

signature schemes.  Its security is based on the security of the 

underlying hash function.  The design goals were to create a 

stateless algorithm based on a well-understood problem. 

B. Algorithm Variations and NIST Security Levels 

To evaluate the security of all PQC candidate algorithms, 

NIST has established a set of security levels [18]. The table 

below summarizes the PQC signature algorithms and their 

security levels.  
Table 1 – PQC Algorithms Security Levels 

NIST Security 
Level 

Reference PQC Algorithm 

1 Brute-force search 

for AES-128 key 

FALCON LogN9, 
SPHINCS+SHA256 128f/s 

2 Random search for 

collision in SHA3-
256 

Dilithium2 

3 Brute-force search 

for AES-192 key 
Dilithium3,  

SPHINCS+SHA256 192f/s 

5 Brute-force search 

for AES-256 key 
Dilithium5, 

FALCONLogN10, 
SPHINCS+SHA256 256f/s 

C. Key and Signature Size 

To present an overall implementation impact, the public 

key size, private key size, and signature size of Dilithium, 

FALCON, and SPHINCS+ algorithms are summarized in the 

Table 2 below.  

 
Table 2 – Key and Signature sizes of FALCON, Dilithium, and 

SPHINCS+ 

Algorithm Public key size 
(bytes) 

Private key size 
(bytes) 

Signature size 
(bytes) 

Dilithium 
2 

1312 
 

2528 2420 
 

Dilithium 
3 

1952 
 

4000 3293 
 

Dilithium 

5 

2592 4864 4595 

 

FALCON 

LogN9 

897 

 

1281 657 

FALCON 

LogN10 

1793 

 

2561 1271 

 

SPHINCS
+128s 

32 64 7856 

SPHINCS

+192s 

48 96 16224 

SPHINCS

+256s 

64 128 29792 

 

IV. PQC IMPLEMENTATIONS 

In terms of performance, the NIST submissions have 

benchmarks but they are inconsistent. This paper attempts to 

benchmark the three signature algorithms in the exact same 

environment. 

A. Hardware Platforms 

As a proof of concept, we selected RISC-V processor 

platforms since its instruction set is open source and we are 

participating in the EU TRISTAN (Together for RISc-v 

Technology and ApplicatioNs) project [19].  

 

1) ESP32C3 platform [20] 

This platform has the following features:  

• 32-bit RISC-V single-core processor, up to 160 

MHz 

• 384 KB ROM 

• 400 KB SRAM (16 KB for cache) 

  

2) Arty7 100T platform [21]  

This platform integrates Altera FPGA with an 

implementation of the FreNox RISC-V processor provided 

by Technolution [22].  

• 32-bit RISC-V single-core processor, up to 450 

MHz  

• 10KB SRAM 

• 16MB FLASH 

• 256MB DRAM 

B. Implementation of PQC Algorithms 

On the above two platforms, we used the reference code 

from FALCON, Dilithium and SPHINCS+ submitters to 



implement the secure boot and secure update functions as 

described in Section 2.  

 

The first version of the implementation uses the minimal 

subset of the ISA (rv32im), which is easy for porting onto any 

RISC-V processors. Furthermore, our implementation only 

focuses on the signature verification function of those PQC 

signature schemes introduced in Section 3 as the secure boot 

and secure update only need signature verification functions. 

The public key used for signature verification is hard-coded.     

 

For this first reference implementation, we do not include 

any hardware acceleration. We will further investigate the 

possibility of optimizing PQC implementations by using 

some hardware accelerators such as floating-point 

instructions, big number hardware acceleration modules 

and/or certain crypto hardware accelerators like hash 

hardware. We are in discussions with Technolution regarding 

which hardware accelerators will be supported in new FPGA.  

 

This initial implementation does not include any 

hardware interrupts, making the execution linear and 

predictable.  

 

C. Measurements 

 

 

Table 3 shows the code size and data size of our 

implementation of FALCON, Dilithium and SPHINCS+ 

signature verification functions.  

 
Table 3 – Code and Data Size of FALCON, Dilithium and 

SPHINCS+s Implementations 

Algorithm Text  

(Bytes) 

Data 

(Bytes) 

Read-

only 

Data 
(Bytes) 

Total 

(Bytes) 

Dilithium 2 27260 3744 

 

1608 

 

32612 

Dilithium 3 27040 

 

5264 

 

1608 

 

33912 

Dilithium 5 26964 7200 1608 35772 

FALCON LogN9 16040 1568 4768 
 

22376 

FALCON LogN10 16040 3088 4768 
 

23896 

SPHINCS+128s 9236 7904 764 17904 

SPHINCS+192s 11540 16288 1512 29340 

SPHINCS+256s 11540 29872 1512 42924 

 

Figure 2 and 3 below show the execution time of a single 

signature verification over a payload of 1024-Byte code using 

FALCON, Dilithium and SPHINCS+s algorithms with 

different NIST security levels on Arty A7 100T and 

ESP32C3 platforms, respectively.  

 

Figure 2 – FALCON, Dilithium and SPHINCS+s signature 

verification time on Arty 100T platform 

 
Figure 3 – FALCON, Dilithium and SPHINCS+s signature 

verification time on ESP32C3 platform 

D. Comparisons 

Table 3 manifests the range of memory footprints for the 

algorithms considered in this study: SPHINCS+128s and 

SPHINCS+256s have the smallest and largest footprints, 

respectively. Of the remaining algorithms, FALCON variants 

have the smallest footprints. Meanwhile, Figures 2 and 3 

show that the time performance of all FALCON variants is 

much better than Dilithium and SPHINCS+s variants (though 

some variants do not have the same security level).  

 

To the best of our knowledge, PQC benchmarking has 

been done mostly on Intel x86 and ARM Cortex-M3 and/or 

M4 processors [27]. This hinders a comparison with our 

RISC-V implementation.  

 

Additionally, most (if not all) implementation of PQC 

algorithms on RISC-V are based on extended instruction set 

and/or take advantage of hardware acceleration [28].  

 

Note that in our initial implementations, we have disabled 

all hardware interrupts, ensuring the execution is linear and 

predictable. 

 



V. IMPACT ON SATELLITE SYSTEMS 

European Space Research and Technology Center has 

published SAVOIR (Space Avionics Open Interface 

Architecture) Flight Computer Initialization Sequence 

Generic Specification [23], which describes ESA 

requirements for the initialization of a typical spacecraft’s on-

board computer. We have analyzed the Nominal Sequence 

(described in Section 4.1.1 of [23]). The Nominal Sequence 

only contains two software modules: Boot SW and 

Application SW. The secure boot mechanism described in 

Section 2 of this paper has additional software modules such 

as boot loader and OTA loader. Implementing the secure boot 

and secure update functions (described in Section 2 of this 

paper) requires adding steps and/or modifying certain steps 

in the Nominal Sequence (described in Section 4.1.1 of [24]).   

   

As described in Section 4, the implementation of secure 

boot based on PQC signature schemes requires roughly 30K 

bytes ROM memory for code (normally does not take much 

hardware resource) and roughly 10K bytes of data memory in 

SRAM (which might be significant in satellite systems). As 

for the signature verification time, it varies depending on the 

PQC algorithm chosen. FALCON (level 5) takes about 30 

milliseconds, whilst Dilithium (level 5) takes 360 

milliseconds on the Arty A7 100T platform, a platform which 

is intended for satellite systems. Evidently, adding a PQC 

based secure boot mechanism will increase the boot time of 

satellite systems, although the impact is acceptable as secure 

boot runs at the very beginning of boot sequence after power 

on and it is once-off till the next power on cycle.  

 

Although the use of PQC algorithms leads to increased 

signature sizes, the impact on the transmission of signed code 

from a ground station to an in-orbit satellite is minimal: the 

packet format definition of the Packet Utilization Standard 

(PUS) [24] is designed to be flexible enough to transport 

variable length data. For very large transmissions (larger than 

64K bytes), multiple packets are used. Using the PUS service 

in this way, the larger sizes of PQC-signed code are not an 

impediment, although of course the larger size of a typical 

PQC signature would take more time to transmit.   

 

Last but not least, we should also consider the support for 

crypto agility in deployment. Our current implementation 

only supports one algorithm at a time, since the PQC 

algorithm is fixed at compilation. This might be acceptable in 

cases where the computer in the satellite system can be fully 

updated in-orbit. This is possible with an FPGA solution, in 

which the Boot ROM code is included in the FPGA bit file. 

If the FPGA option is not available, having multiple PQC 

algorithms pre-integrated in the Boot ROM is an option.     

VI. CONCLUSION AND FUTURE WORK 

This paper presents a prototype of PQC algorithms based 

secure boot and secure update for satellite communication 

systems. For the purpose of secure boot and secure update, 

we do not see any blocking issues with implementing PQC-

based secure boot and secure update mechanisms for satellite 

systems with the assumption that certain extensions or 

modifications of the existing boot sequence [23] and 

additional hardware resources are possible. 

The results presented in this paper are our first-year 

research results for the TRISTAN project. During the 

remaining time of this project, we will continue to work with 

our partners on 1) optimizing the implementation of PQC 

algorithms and 2) continuing to follow up NIST’s fourth 

round of PQC selection (which may add new PQC signature 

algorithms). 
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