
Developing a CCSDS compliant platform to reliably
secure current and future space data links

Louis Masson
CYSEC

Lausanne, Switzerland
louis.masson@cysec.com

Mickael Bonjour
CYSEC

Lausanne, Switzerland
mickael.bonjour@cysec.com

Laurent Thoeny
CYSEC

Lausanne, Switzerland
laurent.thoeny@cysec.com

Sylvain Willy
CYSEC

Lausanne, Switzerland
sylvain.willy@cysec.com

Abstract—The space sector is expanding at an increasing rate
thanks to the momentum provided by the NewSpace industry.
With this rise of new satellite services and facilities, the stakes of
this economy have reached new heights. Ensuring the security of
satellites is more essential than ever to preserve the critical infras-
tructure in space. An identified weakness of satellite platforms
is their communication link with Earth-based ground stations.
With access to radio equipment and knowledge of standard
data link layer protocols, ill-intended actors are able to access
sensitive and confidential data downlinked by satellite. Reverse
engineering of telecommands and seizing control of the satellite
from their operators is only a step away. Industry standardization
efforts have aimed to address this, with a 2015 data link
layer security protocol by Consultative Committee for Space
Data Systems (CCSDS). The Space Data Link Security (SDLS)
protocol, complemented with the SDLS Extended Procedures
(SDLS-EP) in 2020, allows to secure a satellite’s communication
link at the data link layer. The authors propose a portable, easy
to use, and hard to misuse implementation of the SDLS protocol
in an effort to homogenize the industry’s security best practices.
To support the development of this implementation and other
inter-operable implementations of the industry, a development
platform is presented. It is composed of two test environments,
one to test the security of the core SDLS procedures, another to
test high level use cases surrounding the SDLS-EP. The versatility
potential of these tools for improving the security of satellite
communication is discussed, and the initial results of the security
implementation to a variety of test scenarios are detailed.

Index Terms—CCSDS, data link, SDLS, SDLS-EP, extended
procedure, secure satellite communications

I. INTRODUCTION

The growth of the civil and commercial space industry has
been steadily gaining momentum in the past decade through
the proliferation of NewSpace companies. The increase in
satellite services brought by this growth spurt provides un-
deniable value to humankind’s economic and scientific inter-
ests. Inexorably, this value has been shadowed by legitimate
concerns regarding the sustainability and continued safe use of
space. Concerns have been raised against the impact that mega-
constellations such as Starlink have been having on astronomy
activities on Earth. Others have been raised against the ever
increasing risk of collisions with debris. The main concern that
shall be addressed in this paper regards the security aspects
that come with such uncontrolled growth.

As a case study, the recent attack on Viasat modems that
occurred on February 24th 2022 has shown how such security

events have real and dire consequences. A demonstration of a
satellite being taken over by a hostile entity has been demon-
strated in an academic exercise presented by Thales at the
CYSAT 2023 conference, in Paris. The threat of an intrusion
in existing satellites is compounded by the increasing size
of satellite constellations. Combined with expansive ground
station and terminal networks, these infrastructures provide a
wide and vulnerable attack surface for cybersecurity threats.

Future events with nefarious impact to government services,
commercial activities, and the sustainability of Earth’s access
to space are an inevitability [1]. Indeed, targeted attacks on
spacecraft orbiting the Earth pose a risk of rendering them
inoperable, non-compliant, and – at the worst – dangerous
when equipped with propulsion systems. One attack vector
that presents itself as sensitive is the communication link from
satellite to their ground segment, as well as Inter-Satellite
Links (ISL) to a certain extent. Hostile actors with access
to radio equipment, with knowledge of a spacecraft’s used
frequency bands, and with knowledge of frame encoding /
decoding processes are well capable of two things: accessing
potentially sensitive and confidential data that is transmitted by
the satellite, and sending commands (and potentially software
updates) with the aim of seizing control of the satellite from
its rightful owner and operator.

In light of traditional approaches to spacecraft and commu-
nication systems design, security considerations and solutions
in the space industry have frequently been dissociated from
the design of data link protocols. Adding security as an
afterthought is a definite weakness for a system’s overall secu-
rity, and security considerations should be taken into account
through all stages of space systems development. Additionally,
some commercial space actors have wrongfully relied on
security through obscurity by expecting to be protected by
the secrecy of their communication protocols.

Recent standardization efforts have aimed to address
this. The Consultative Committee for Space Data Systems
(CCSDS) published a security standard in 2015, the Space
Data Link Security (SDLS) protocol [2]. SDLS provides the
means to integrate basic security features – i.e., encryption
and authentication – to the CCSDS’ widely adopted Space
Data Link Protocols (SDLP), e.g. Telecommands (TC) and
Telemetry (TM). This standard has been complemented in
2020 by Extended Procedures [3], increasing the security



capabilities of the protocol with a Key Management Service
(KMS), a Security Association Management Service (SAMS),
and a Monitoring & Control Service (MCS).

However, the industry’s slow adoption of the standard and
the late development of compliant market products are insuf-
ficient when faced with the urgency posed by cybersecurity
threats to satellite services. This paper aims to present a
platform for the development of security solutions with ease
of deployment and security best practices in mind. To provide
a solution that can be widely used and swiftly integrated into
already deployed systems, compliance with the SDLS protocol
has been targeted. With this aim in mind, a test platform
has been developed by the authors to simulate the link and
instrument the libraries being tested between a spacecraft and
a ground station. The platform consists of test environments
following two goals: to test the resiliency of an implemented
secure link, and to validate the correct execution of Extended
procedures.

In the following sections, an overview of the SDLS protocol
shall be provided first. This shall be followed by a presentation
of SATLINK, the SDLS compliant solution that has been de-
veloped by CYSEC. Subsequently, the two test environments
that make up the presented development platform shall be
presented, followed by a discussion on the results that have
been obtained by these platforms.

II. OVERVIEW OF SPACE DATA LINK SECURITY

The Space Data Link Security (SDLS) protocol has been
published by the Consultative Committee for Space Data
Systems (CCSDS) in 2015 [2]. A summary of concepts and
rationale of the base SDLS protocol and its extensions has
been published in a CCSDS Green Book [4] [5] [6]. With this
protocol, the CCSDS has opened up the possibility of adding
security features to protocols that reside in the data link layer,
i.e. Layer 2, of the Open System Interconnection (OSI) model.

Addressing the security of the link between a satellite and
the ground segment at the data link layer comes with the
advantage of early mitigation of attacks. This is due to security
being applied at the first data level of the communication stack.
Data link layer frames carry packets that need to be routed
through the satellite bus to all subsystems, sensors, actuators,
and payloads that a satellite is comprised of. Detecting issues
when a frame is decoded and before routing packets to
sensitive systems makes for an overall better reactivity in the
events of attacks.

The implementation of authentication mechanisms at the
data link layer also reduces the overhead of security on the
bit rate of the communication. By authenticating a group of
packets transported in a single frame instead of authenticating
each packet individually, a single Message Authentication
Code (MAC) is needed. This reduces the impact of security
on effective transfer rates, resulting in a more efficient space
link in terms of data throughput.

The SDLS protocol aims to solve two concerns that are
typical in communication protocols between remote systems,
satellites included:

Fig. 1. Structure of an unsecured CCSDS frame

Fig. 2. Insertion of security features into a frame

• authenticity of the communication is guaranteed, meaning
that the receiver shall be able to verify that incoming
communications have been created by a legitimate and
authenticated endpoint,

• confidentiality of the transferred data is guaranteed, mean-
ing that any actor intercepting the data shall not be able
to interpret it.

A. Principle of operation

The basic security mechanisms allowing the SDLS proto-
col’s services to address these two concerns are twofold, as
illustrated in Fig. 1 and Fig. 2.

On the one hand, encryption of a frame’s data field through a
cryptographic encryption algorithm associated with a matching
key ensures confidentiality of the data carried by the packet.
The resulting cipher text cannot be decrypted by an actor
which does not have access to the key used in the crypto-
graphic process. Intended recipients of the frame which hold
the key shall be able to decrypt the content of the frame’s data
field.

On the other hand, a frame can be authenticated by comput-
ing a MAC through a cryptographic authentication algorithm
associated with a matching key. The computed code is then
appended to the end of the frame, encapsulated in a Security
Trailer (see Fig. 2). A receiver will be able to run the frame
through the same algorithm while using the same key and
compare the resulting MAC with the code that has been
appended. When asserting that the calculated and appended
codes match, the recipient shall be able to verify that the frame
has been created by an actor who holds the same key.

Both security mechanisms may be combined at once
through separate cryptographic algorithms for authentication
and encryption using their respective keys, or by using Authen-
ticated Encryption with Additional Data (AEAD) algorithms
such as AES-GCM with a single key [7].

The security procedures supported by the SDLS protocol
are based on symmetrical cryptographic algorithms, implying
that both endpoints (i.e. satellite and ground station, or satellite
and satellite) hold a shared secret (i.e. identical pair of private
keys).

B. Concepts of the base protocol

SDLS is a protocol that is described through procedures.
Two procedures form the minimal and baseline service that



SDLS-compatible systems must provide: ApplySecurity is ini-
tiated by a sending endpoint in order to insert security features
into an outgoing frame (i.e. authentication and/or encryption);
ProcessSecurity is initiated by the receiving endpoint in order
to unpack an incoming frame from its security features (i.e.
decryption and/or authentication).

In support of these procedures, the standard defines the
concept of Security Associations (SA). These data constructs
essentially configure and manage the secure link between
two endpoints, and are instanced on and maintained by both
endpoints. An SA configures a secure link by defining the
algorithms to be used, the keys that must be used with
these algorithms, and manages a rolling Anti-Replay Sequence
Number (ARSN). The SA concept has been borrowed and
adapted from the IPSec VPN protocol for SDLS.

The latter, used in security schemes relying on authentica-
tion, tracks the most recent frame that has been successfully
authenticated by the protocol. It is an added layer of security
which serves to thwart replay attacks: frames that are of
an older sequence number than the ARSN value currently
maintained by an SA shall immediately be rejected.

The correct end-to-end execution of ApplySecurity and
ProcessSecurity relies on parameters that must be passed
from one endpoint to the other. This is achieved through
Protocol Data Units (PDU) that are inserted into the frame
by the ApplySecurity procedure as illustrated in Fig. 2. The
optional Security Trailer merely carries a MAC for secure links
that require authentication. The mandatory Security Header
provides necessary arguments for the receiving endpoint’s
execution of ProcessSecurity:

• a Security Parameter Index (SPI) identifying which SA
should be used for the procedure,

• (optionally) a Sequence Number (SN) if authentication is
used,

• (optionally) an Initialization Vector (IV) if encryption is
used,

• (optionally) a padding length parameter when it is re-
quired for a given algorithm.

C. Extended Procedures

The SDLS protocol published by the CCSDS in 2015
provides a minimum viable approach to the issue of satellite
communication security. The proposed approach comes with
the assumption that satellites are deployed with a static set
of keys and SA through which the mission would be able to
cycle through if needed. The simplicity of this implementation
unfortunately comes at the cost of the system’s overall security.
Should all keys be used in response to security events through
the course of the mission, the satellite operator will not
be able to guarantee the confidentiality and authenticity of
communications anymore.

In response to this inherent weakness of the base SDLS
protocol, the CCSDS has issued in 2020 the Space Data
Link Security Extended Procedures (SDLS-EP) [3] [8]. The
procedures defined in this extension of the SDLS protocol
expand on the protocol user’s control of keys and SA through

a multitude of services: a Security Association Management
Service (SAMS), a Key Management Service (KMS), and a
Monitoring & Control Service (MCS).

Each service provides a set of procedures which may be
initiated by any endpoint of a secure link. These procedures
are executed in the form of PDU transported in data link layer
frames which carry commands to and responses from either
endpoint. These procedures enable Over The Air Rekeying
(OTAR) of the secure link of live & operational missions
through the KMS. In addition to these key rotation capabilities,
the procedures also enable the re-configuration and creation of
new SA for all communication channels of the secure link
through the SAMS. Finally, the MCS provides monitoring
capabilities of the secure link, enabling the mission operator
to monitor any security events that may have occurred on the
secure link.

D. State of the protocol in the industry

The importance of this security standard being published by
the CCSDS has industry wide implications. The Telecommand
(TC) [9] and Telemetry (TM) [10] Space Data Link Protocols
(SDLP), among other SDLP [11], are issued by the CCSDS.

The implementation of these data link layer protocols and
their use in the civil industry is common ground. The built-in
compatibility of the SDLS protocols with these SDLP facil-
itates the rapid adoption of this security standard across the
aerospace industry. Additionally, a lightweight implementation
can be applied to already deployed satellite missions. This
concerns satellites supporting software update capabilities,
paving the way to secure the communication links for currently
unsecured satellite communication links.

Governmental agencies are known to have their own im-
plementation of the SDLS protocol for their missions, with
inter-operability tests between implementations have been
conducted between the European Space Agency (ESA), the
Centre National d’Études Spatiales (CNES), and the National
Aeronautics and Space Administration (NASA) [12] [13].

However, the recent publication of the SDLS protocol
means that the industry adoption rate is not universal after
this short time frame. This is made apparent by the absence of
market-ready solutions that exist at the time of publication of
this paper. Publications that approach the topic of the SDLS
protocol use it as a case study rather than through an im-
plementation angle. The exception being the inter-operability
testing published by governmental agencies [12].

III. SATLINK: SDLS COMPLIANT LIBRARY

There are no SDLS compliant solutions publicly available to
the civil aerospace industry at the time of publication of this
present paper. ARCA SATLINK, presented in the following
paragraphs, has been developed by CYSEC in order to address
this current gap in the industry. As it shall be discussed, ARCA
SATLINK is developed on two separate streams: one focusing
on an implementation targeted at ground segments, another
focusing on an implementation targeted at space segments (i.e.
satellite platforms). The development of the ground endpoint



will be mainly discussed, as it has been the main actor of
the tests environments described in the following sections.
The space endpoint is briefly touched upon in the following
paragraphs, but the specifics of this implementation will be
addressed in a followup publication.

A. Design assumptions

In an effort to pursue industry homogenization through the
application of standards, ARCA SATLINK has been designed
to be compliant with the SDLS protocol (see Section II).
Since SDLS is grafted onto CCSDS data link protocols such
as TC and TM, the library would need to be usable within
satellite operators existing workflows without replacing them.
Hence the form of a library exposing a convenient interface
has been chosen for ARCA SATLINK. Illustrations of how
ARCA SATLINK would be deployed on either ground or
space segments are respectively shown in Fig. 4 and Fig. 5.

A primary assumption for the implementation of this library
stipulates that it would need to be compatible with a wide
variety of configurations. This is because each satellite inte-
grator’s implementation may vary in terms of used hardware
and network configurations, which is all the more pertinent
for the space segment. Therefore, the library shall not rely on
specific backend to complete its operations. In the following
paragraphs, a backend is defined as a layer of software
that interfaces the library’s internal modules for storage or
cryptographic processes with external software or hardware.

As ARCA SATLINK is intended as a library with built-in
security best practices, another important design assumption is
that it shall be hard to misuse. As an example as to what this
entails, any user choice that may lead to a security risk – e.g.,
using encryption only mode without protecting the authenticity
of the data – must be explicitly enabled by the library’s before
being usable.

Finally, one final assumption for the design of ARCA
SATLINK is that the user’s data link implementation between
the various endpoints is reliable. Since the library does not
replace the communication link workflow of the user but is
instead used to enhance it with added security, it is dependent
on the user to transport frames to and from the other endpoints.

B. Software architecture

An overview of the architecture is schematized in Fig. 3. All
the colored blocks are considered as modular components of
ARCA SATLINK. It is important to consider that, typically,
the ground variant of the library will act as the initiator of
SDLS-EP procedures. Therefore, the ground segment is not
focusing on being lightweight but on being robust and covering
all the features that are needed.

As a stated goal for the library, as much flexibility as
possible must be offered to the user. One example is the
customization of the library through the many mission-specific
parameters that can differentiate a mission from another.
Additionally, the library accepts different approaches to some
mission configurations. The best example of this may be found

Fig. 3. Structure of the SATLINK ground library

with the use cases of the SDLS Extended Procedure (SDLS-
EP): the library may be used either as a proxy, in which it
generates packets that the user wraps in their used data link
protocols; or it may be used transparently, where a dedicated
virtual channel of the satellite is used to transport SDLS-EP
Protocol Data Units (PDU).

The library has been made to be independent of specific
software or hardware through its modular design. Firstly,
it supports different cryptographic libraries as the backend
for its security operations, and can be extended to interface
with existing solutions should a specific user need require it.
Secondly, the same principle applies to SA and keys: their
storage may be handled by an existing database or secrets
management implementation – e.g., Amazon Web Services
(AWS) S3, Hashicorp Vault, regular filesystem – or they may
be tailored to match specific needs. Finally, the input and
output streams, as well as the logs generated by the library,
come with a generic implementation. It is up to the user to
decide how the library will be used depending on their needs.

C. Development approach

The development process of SATLINK has followed Test
Driven Development (TDD) principles. Due to the safety
critical nature of the project, a strong focus on quality and
security for both the ground and space variants of the library
has been enforced.

The quality of the software has been built from the ground
up since the early stages of development steps with the
elaboration of extensive tests at several levels: unit tests to
verify the behavior of individual components, integration tests
to validate the behavior of multiple components integrated
together, and high level functional tests which validate the use
cases of the library. Integration tests have been used to ensure
the quality of the modular aspects of ARCA SATLINK, as
combinations of backends must be verified to be compatible
with one another. The test environments presented in the next
sections of this paper pertain to the high level testing of the
library. Continuous Integration and Delivery (CI/CD) practices



Fig. 4. Example of a SATLINK ground integration

have been followed, with reviews and regression testing being
applied to every project increment.

Due to the safety critical nature of the project, the library
would need to be crash free and able to fail safely in case
of failure. With this in mind, the Rust programming language
has been selected as the programming language for the ground
variant of the library due to its strong memory safety and
concurrency guarantees [14]. The static analysis of the Rust
compiler alongside tools from the Cargo ecosystem have been
instrumental in maintaining high quality standards.

D. Ground deployment

The deployment of ARCA SATLINK on the ground seg-
ment follows the workflow presented in Fig. 4. It is either
implemented in its library form as an on-premise solution, or it
is hosted on the cloud as a service hosted on the Amazon Web
Services (AWS) platform. The two approaches are discussed
in the following paragraphs.

For on-premise deployments, the satellite integrator inte-
grates ARCA SATLINK to their workflow by directly using
the Application Programming Interface (API) calls of the
library. After library initialization, frames are passed through
ApplySecurity and ProcessSecurity calls in order to be en-
crypted, decrypted, or authenticated.

The cloud deployment of ARCA SATLINK aims to be
integrated with the AWS ecosystem. The ARCA SATLINK
library is hosted on an AWS instance, and its API calls are
exposed externally to the user. This storage, logging, and
cryptographic processes are all fulfilled by AWS live services.
To encrypt, decrypt, or authenticate frames, the user must push
frames to be processed and pull processed frames to and from
AWS First-In-First-Out (FIFO) queues. The architecture of
SATLINK on AWS respects the one introduced earlier, with
the whole API being provided in a cloud alternative.

E. Space deployment

The same concepts and design principles have been applied
to the space variant of ARCA SATLINK. The space endpoint’s

Fig. 5. Overview of SATLINK space deployment

library has been developed with a focus on flexibility – due
to less providers being natively supported – and with the goal
of not constraining the user. This is all the more relevant in
space applications as satellite architectures vary considerably
from on satellite integrator to the next.

Unlike its ground variant, the space-bound library has
been made to be portable and lightweight. The portability
aspect stems from the aforementioned particularity of satellite
platforms being integrator specific. As for the software being
lightweight, this has been identified as essential to make the
integration of this software with bare metal applications that
are sometimes found in the embedded systems used to drive
satellites.

Following these requirements, the space variant has been
developed using the C99 programming language. Due to the
safety critical aspects of the deployment on a satellite and the
more stringent memory safety requirements, Motor Industry
Software Reliability Association (MISRA) 2012 guidelines for
C99 have been followed. In the interest of qualifying the soft-
ware for re-use by satellite integrators, European Cooperation
for Space Standardization (ECSS) software development and
quality processes have been followed. The same TDD prin-
ciples have been followed for this project as well, combined
with the same CI/CD processes. These guidelines coupled with
the use of static analysis tools such as SonarQube [15] and
Valgrind [16] have provided optimal guarantees regarding the
safety and security of the software.

The space-bound form of ARCA SATLINK is only intended
to be deployed in its library form by the developer of a
satellite’s flight software. Fig. 5 illustrates an example of a
simplified satellite architecture using SATLINK space library.
The user must invoke function calls exposed by the library
in order to encrypt, decrypt, and authenticate incoming and
outgoing frames before broadcasting or receiving them.

IV. END-TO-END TEST PLATFORM

The functional tests, apart of the TDD methodology de-
scribed in the previous section, are run as part of a ensemble
of automated regression tests that are performed in the CI/CD
workflow. To facilitate the instrumentation of these tests, two
test environments have been developed. The first one of these,
the End-to-End (E2E) test environment, shall be presented in
this section.

The purpose of E2E tests are to assess that the SDLS
implementation deployed on two endpoints is performing as



Fig. 6. Architecture of the E2E SDLS test environment

described by the baseline version of the standard (without Ex-
tended Procedures). In other words, they allow to ensure that
frames that have gone through the ApplySecurity procedure
will successfully be decrypted and authenticated when going
through the ProcessSecurity procedure. Additionally, the E2E
tests serve the purpose of verifying the resilience of the SDLS
implementation to common attacks that could be perpetrated
on the space link. This E2E test environment has orchestrated
the verification latter by providing a backdoor which simulates
attacks on the physical channel.

It is worthy of note that, although this E2E test environment
has been developed for the tests of the SDLS implementation
presented in this paper, it is capable of being interfaced with
other implementations. In particular, ARCA SATLINK may be
tested with another SDLS implementation, or any other two
implementations may be tested together. This paves the way
for inter-operability tests between SDLS implementations, and
for the verification of the mutual compliance to the CCSDS
standard across the industry.

The architecture of the environment presented in Fig. 6
has been used for the demonstration of the ground variant
of ARCA SATLINK at the CYSAT 2023 conference in Paris.
For this demonstration, the two endpoints were run in envi-
ronments which approximate their real deployment targets: an
endpoint has been deployed on an embedded STM32 board
to simulate the space endpoint; another endpoint has been
deployed on AWS to simulate the ground segment.

The Client shown in Fig. 6 serves as the means to instrument
the SDLS implementation to be tested, and to provide an
interface between the library and the rest of the environment.
Both endpoints run a client so that frames are processed by the
SDLS implementations’ ApplySecurity and ProcessSecurity
procedures. Outgoing frames on which ApplySecurity has been
applied are then transferred to the other endpoint through the
next component.

The Link Proxy shown in Fig. 6, as aptly suggested by the
name, is a proxy through which all transactions of frames
between both endpoints transit. In essence, it simulates the
physical layer – i.e., Radio Frequency (RF) bands – of the
communication stack. Conveniently, it also allows the user of

the E2E test environment to eavesdrop on the frame traffic
between both endpoints, be it secured or not. Not only does
it serve to monitor the communications, but it also provides
means to interfere with the communication link through frame
manipulation. Such a mechanisms allows to simulate cases
where a third party intercepts or injects frames into the space
link in an attempt to seize control of the satellite from its
operator. As such, this software component fulfills the envi-
ronment’s imperative to verify that the SDLS implementation
is resilient to common attack patterns.

The frame manipulation capabilities of the Link Proxy
are based on identified potential attack vectors. As such, in
addition to providing a window into what is transiting through
the link, this component of the test environment is capable of
performing:

• Frame replay, to test the anti-replay sequence number
mechanism;

• Frame tampering, to assess the authentication mecha-
nism;

• Frame permutation, to provide insight into the system’s
behavior in cases of frames arriving in disorder;

• Frame forwarding, for nominal frame transfers without
intervention.

Finally, the Control Command shown in Fig. 6 is the tool
providing control over the whole test environment to the user.
Additionally, it can be used to automate testing which is
essential in making CI/CD processes efficient. This component
has the form of a command line software that is executed from
a terminal. It provides control over the other components of the
test environment, any Client or the Link Proxy, by sending Tag-
Length-Value (TLV) packets that describe various operations:

• (Client) Send an amount of N TM frames from the space
endpoint,

• (Client) Send an amount of N TC frames from the ground
endpoint,

• (Link Proxy) Replay the next N frames from either
endpoints,

• (Link Proxy) Tamper the next N frames from either
endpoints,

• (Link Proxy) Perform random permutation of the next N
frames from either endpoints.

Same as for the ground variant of ARCA SATLINK, all of
the previously presented components of the E2E test environ-
ment have been developed in the Rust programming language.
This has been convenient for developing cross-compatible,
memory safe, small-scale, and easy to maintain software to
implement these components.

Another goal of the E2E test environment has been to
visualize the logs coming from the Client endpoints and the
Link Proxy to demonstrate that ARCA SATLINK, or any
other SDLS implementation, is behaving as intended. The logs
produced by each component are mounted into the operator
of the test bench and showed in an easily readable output as
shown in the Fig. 7. This is achieved using a tmux terminal in
order to display information side-by-side in organized panels.



Fig. 7. E2E test environment visualization of logs:
top left is the space endpoint log; center is the Link Proxy log; bottom left is
the ground endpoint log; top right displays the space endpoint’s SA; bottom
right display the ground endpoint’s SA.

Coloring is applied to panels to easily situate which endpoint
they concern, i.e. blue for space and red for ground.

V. SDLS-EP INTER-OPERABILITY TESTING

As the SDLS protocol is a standard, it is naturally implied
that it will come in several implementations from various
authors. To uphold the standard as a means to homogenize in-
dustry practices, each implementation should be inter-operable
with one another. Erroneous interpretation of the standard
is a possibility, thus testing implementations in this manner
becomes a necessity. In order to reduce this risk, the ARCA
SATLINK solution is tested with itself as well as with other
available SDLS implementations. With this CCSDS standard,
the inter-operability is not guaranteed as there are several
parameters that are mission-specific. ARCA SATLINK must
then be configured with the same algorithm and parameters
on both implementations to be tested.

As the Extended Procedures are required be transported by
frames secured through SDLS procedures, testing the inter-
operability of the SDLS-EP also allows to test of the baseline
procedures, ApplySecurity and ProcessSecurity. At the time
of writing, the authors test ARCA SATLINK against NASA’s
CryptoLib1 as it is open source.

The inter-operability tests may be executed either on indi-
vidual SDLS-EP procedures, or on more complex real-world
use cases. One such use case that is useful to evaluate is the
rotation of keys for a currently operational SA. For this use
case, which is framed as an operation by the authors, the
following sequence of seven SDLS-EP are executed:

1) OTAR (Over-the-Air-Rekeying): a new set of keys are
transferred to the recipient,

2) Key Activation: the state of a set of keys is set to Active
on both the initiator and the recipient,

3) Stop SA: the state of an SA is set to Keyed on both the
initiator and the recipient,

1NASA Cryptolib repository: https://github.com/nasa/CryptoLib

4) Expire SA: the state of an SA is set to Unkeyed on both
the initiator and the recipient,

5) Set ARSN: the anti-replay sequence number of the SA
is set to zero,

6) Rekey SA: the keys of an SA are configured for both the
initiator and the recipient,

7) Start SA: the state of an SA is set to Operational on both
the initiator and the recipient.

In order to test the SDLS-EP and various use cases tran-
scribed as operations, different test cases have been auto-
mated. This has been achieved through a suite of python
scripts allowing to programmatically launch and control the
different software components. The different test instructions
implemented in these scripts are the following:

• Start and stop an SDLS implementation instance, i.e.
ARCA SATLINK or NASA’s CryptoLib;

• Setup the databases, to simulate a specific situation or
scenario;

• Inspect the databases and logs, to assert their states and
content;

• Instrument an SDLS implementation, to execute a speci-
fied SDLS-EP;

• Instrument the Link Proxy, to simulate issues on the
communication link.

This approach has the advantage to offer a simple way to
manipulate the different entities interfaced by the tests. The
tests can then be scripted in python or any other compatible
framework allowing to easily create a great number of com-
plex test scenarios replicating real-life operations in various
situations and starting conditions.

To control the tests, the authors use behave23, a python
Behavior Driven Development (BDD) testing library. In order
to be controllable from within the tests, each library is inte-
grated into a dedicated test client that listens for commands on
Transmission Control Protocol (TCP) links. This enables the
instrumentation of the tests from any language and framework.
The authors chose python with behave for its simplicity and the
support of Gherkin language, which allows to write powerful
automated tests in plain English.

In this example, the feature corresponds to the name of
the test suite and each test is a scenario. Each scenario is
composed of steps beginning with either Given, When or Then
keywords to express a different type of instruction within the
test. The steps are implemented as string patterns, associated
with a python function, which can contain identifiers to capture
values as function parameters. The following is an example of
steps that can be implemented for a test case:

Then sending a command Key Inventory (1 to 10) to "A"

Then the node "A" should have logged "Received EP

notification: KeyInventory([(KeyID([0, 1]), Active)])"

Although Gherkin hides the technical specificities of the
tests, it opens up the writing and maintenance of test to more

2Behave repository: https://github.com/behave/behave
3Behave documentation: https://behave.readthedocs.io

https://github.com/nasa/CryptoLib
https://github.com/behave/behave
https://behave.readthedocs.io


people. In particular, people who have functional expertise on
the tested implementation’s behavior but don’t need to know
the details of the implementation. As these types of end-to-
end tests are very high-level, the details are far less relevant
than for unit or integration test. In this context, the advantages
overweigh the disadvantages of the obfuscation of a test’s
technical implementation.

VI. CONCLUSION

The looming cybersecurity threat to satellites by way of
their sensitive communication link to Earth has been well
established. This threat vector would allow ill-intentioned
actors to access potentially sensitive data broadcasted by the
satellite and, in the worst case, seize control from its operator.
The reliance on security through obscurity leads into a false
sense of security. Furthermore, the decoupling of security
aspects from other aspects of a mission’s design introduce
vulnerabilities to the system.

To address these concerns, a solution following the stan-
dardization efforts of the CCSDS through the SDLS protocol
is proposed in this paper. The development of an easy to use,
hard to misuse, and secure solution, the ARCA SATLINK
software library, has been presented. A defining characteristic
of this tool is its versatility in terms of supported cryptographic
backends and secrets (i.e. keys and Security Associations)
storage. Additionally, it comes with built-in security best
practices which have been design and reviewed in collabo-
ration with security professionals. Two different variants are
discussed: a ground variant, developed in Rust and intended for
deployment in ground stations; and a space variant, developed
in C following ECSS standards for flight software development
intended for deployment in spacecraft. The libraries aim to be
inter-operable with other implementations following the same
standard, hence use of the two variants in conjunction is not
necessary.

A platform for the testing and validation of software imple-
menting the SDLS protocol, whether it be ARCA SATLINK
or any other, is then presented through two test environments.

On the one hand, an end-to-end test environment instru-
menting SDLS implementations and provides tools to test the
resilience to typical attacks. The tools allow the implementer
to test the reaction of the library to replay attacks, frame
tampering, and frame permutations. This particular test envi-
ronment mostly concerns itself with the base SDLS protocol
and precludes any key rotations and Security Association
reconfigurations. Two instances of the ground variant of
ARCA SATLINK have been successfully interfaced using this
environment.

On the other hand, a test environment for SDLS Extendend
Procedures tests the inter-operability of various implementa-
tions on the procedures. An example of tests between the
ground variant of ARCA SATLINK and the NASA CryptoLib
is provided, and shows that inter-operability can be achieved
and validated. This test environment is still a work in progress

and will keep evolving in the future to support all of the SDLS
Extended Procedures.

These developments form stepping stones in an effort
to consolidate the industry’s practices in securing satellite
communications. Considerable effort has been poured into
understanding the standard, which have served to successfully
design the architecture of ARCA SATLINK, a compliant
implementation. The presented work has been instrumental
in formulating one of the first SDLS compliant products to
be presented publicly. The next steps to be followed for this
endeavor include the testing of the space variant of ARCA
SATLINK in both test environments. Additionally, the space
variant of ARCA SATLINK is to be flown on the OPS-SAT
cubesat operated by ESA with the objective of attaining flight
heritage.

REFERENCES

[1] P. Tedeschi, S. Sciancalepore, and R. Di Pietro, “Satellite-based com-
munications security: A survey of threats, solutions, and research
challenges,” Computer Networks, vol. 216, p. 109246, Oct. 2022.

[2] Consultative Committee for Space Data Systems, “Space Data Link
Security Protocol (CCSDS 355.0-B-2),” 2022.

[3] Consultative Committee for Space Data Systems, “Space Data Link
Security Protocol—Extended Procedures (CCSDS 355.1-B-1),” 2020.

[4] Consultative Committee for Space Data Systems, “Space Data Link
Security Protocol—Summary of Concept and Rationale (CCSDS 350.5-
G-1),” 2018.

[5] I. A. Sanchez, G. Moury, and H. Weiss, “The CCSDS Space Data Link
Security protocol,” in 2010 - MILCOM 2010 MILITARY COMMUNI-
CATIONS CONFERENCE, (San Jose, CA, USA), pp. 219–224, IEEE,
Oct. 2010.

[6] I. A. Sanchez, G. Moury, C. Biggerstaff, B. Saba, D. Fischer, and
H. Weiss, “Towards completion of the CCSDS space data link security
protocol,” in 2012 IEEE Aerospace Conference, (Big Sky, MT), pp. 1–
18, IEEE, Mar. 2012.

[7] D. McGrew and K. Igoe, “AES-GCM Authenticated Encryption in the
Secure Real-time Transport Protocol (SRTP).” RFC 7714, Dec. 2015.

[8] D. Fischer, I. Aguilar Sanchez, D. Koisser, B. Saba, G. Moury, B. Bailey,
C. Biggerstaff, H. Weiss, and D. Richter, “Making space-link security
work: Auxiliary services to enable the CCSDS Space Data-Link Security
Protocol,” in AIAA SPACE 2016, (Long Beach, California), American
Institute of Aeronautics and Astronautics, Sept. 2016.

[9] Consultative Committee for Space Data Systems, “TC Space Data Link
Protocol (CCSDS 232.0-B-4),” 2021.

[10] Consultative Committee for Space Data Systems, “TM Space Data Link
Protocol (CCSDS 132.0-B-3),” 2021.

[11] G. Kazz and E. Greenberg, “CCSDS Next Generation Space Link
Protocol (NGSLP),” in SpaceOps 2014 Conference, (Pasadena, CA),
American Institute of Aeronautics and Astronautics, May 2014.

[12] D. Fischer, I. Aguilar Sanchez, B. Saba, G. Moury, B. Bailey, C. Big-
gerstaff, H. Weiss, M. Pilgram, and D. Richter, “Finalizing the CCSDS
Space-Data Link Layer Security Protocol: Setup and Execution of
the Interoperability Testing,” in AIAA SPACE 2015 Conference and
Exposition, (Pasadena, California), American Institute of Aeronautics
and Astronautics, Aug. 2015.

[13] D. Fischer, M. Spada, and D. Koisser, “SpaceSecLab: A Representative,
Modular Environment for Prototyping and Testing Space-Link Security
Protocols End to End,” Springer International Publishing, pp. 375–394,
2017.

[14] S. Klabnik and C. Nichols, The Rust Programming Language, 2nd
Edition. No Starch Press, 2023.

[15] G. A. Campbell and P. P. Papapetrou, SonarQube in action. Manning
Publications Co., 2013.

[16] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight
dynamic binary instrumentation,” ACM Sigplan notices, vol. 42, no. 6,
pp. 89–100, 2007.


	Introduction
	Overview of Space Data Link Security
	Principle of operation
	Concepts of the base protocol
	Extended Procedures
	State of the protocol in the industry

	SATLINK: SDLS compliant library
	Design assumptions
	Software architecture
	Development approach
	Ground deployment
	Space deployment

	End-to-end test platform
	SDLS-EP inter-operability testing

