
Distributed intrusion detection system for CubeSats,
based on deep learning packets classification model

Otman Driouch
1Smart Communications Research Team,

University Center for Research
in Space Technologies,

Mohammadia School of Engineers
Mohammed 5 University in Rabat.
2Royal Center for Space Research

and Studies.
Rabat, Morocco

otmandriouch@research.emi.ac.ma

Slimane Bah
1Smart Communications Research Team,

University Center for Research
in Space Technologies,

Mohammadia School of Engineers
Mohammed 5 University in Rabat.

Rabat, Morocco
slimane.bah@emi.ac.ma

Zouhair Guennoun
1Smart Communications Research Team,

University Center for Research
in Space Technologies,

Mohammadia School of Engineers
Mohammed 5 University in Rabat.

Rabat, Morocco
zouhair@emi.ac.ma

Abstract—As part of the significant evolution that the space
industry is experiencing, a fast increase in the number of
CubeSats projects for scientific, commercial and military pur-
poses has been noted in recent years. This acceleration, coupled
with the widespread use of Commercial Off-The-Shelf (COTS)
components, raises questions about the ability of these systems
to withstand potential cyberattacks, which are becoming more
prevalent. Thus, the cyber resilience of a CubeSat depends on
its ability to effectively detect attacks despite the constraints
of autonomy and the limitation of resources that characterize
the space missions. To address this need, our paper proposes
an Intrusion Detection System (IDS) for CubeSat systems. This
distributed solution uses an Artificial Neural Network (ANN)
module for classifying CSP packets over CAN on board the space
segment based respectively on timestamp and Data field, while the
classifier training processes are executed at the ground segment
level. The results obtained following the experimentation of this
IDS against three types of common attacks are very encouraging
thanks to detection rates obtained between 87.66% and 99.59%
(F1-score).

Index Terms—Space technology, CubeSat, intrusion detection,
cybersecurity, deep learning

I. INTRODUCTION

The landscape of space applications is evolving rapidly
with the proliferation of small satellites, particularly CubeSats,
marking a new era in the use of space technology for scientific,
commercial and educational purposes. As access to space
has expanded, so have the potential risks posed by malicious
actors seeking to exploit vulnerabilities in CubeSat systems.
The latter, characterized by their miniature size and cost-
effectiveness, have democratized access to space fostering a
surge in satellite deployments. However, this democratization
has brought forth a new set of cybersecurity challenges,
as the traditionally closed and secure environment of space
becomes more accessible. This paradigm shift justifies the
implementation of detective and corrective security controls
adapted to the evolving cyberthreat landscape in the ”New
Space” era [1]. Our research focuses on the need for in-
trusion detection capabilities to safeguard CubeSats against

potential cyberattacks. Unlike traditional satellites, CubeSats
often operate with extremely limited computational resources
and are designed for specific, power-constrained missions
[2]. As a result, they may lack security measures inherent
in larger satellites, making them susceptible to a range of
cyberthreats such as denial of service (DoS) attacks, spoofing,
and unauthorized access [3].

In this context, our research aims to explore scenarios
of intrusion attempts specific to CubeSats and elucidate the
imperative for intrusion detection capabilities tailored to the
challenges of this emerging space domain. By understanding
different intrusion mechanisms, we can design a well-trained
IDS with high detection rates of malicious packets.

This research seeks to contribute to the growing body of
knowledge surrounding cybersecurity in space missions:

• Drawing up a panorama of the most likely CubeSat Space
Protocol (CSP) attack scenarios and their associated in-
trusion mechanisms,

• Presenting the design of a distributed IDS that effectively
detects these intrusion attempts by classifying CSP pack-
ets using an ANN model. This distributed architecture
aims to reconcile the detection performance and the con-
straints related to the limited resources aboard CubeSats.

• And providing insights that are crucial for the develop-
ment of secure and resilient CubeSat systems. In doing
so, we advocate for a proactive approach to cybersecurity
in the New Space frontier, emphasizing the importance
of integrating intrusion detection capabilities to mitigate
the evolving cyber threats facing CubeSats.

The present paper includes six sections: after the introduc-
tion, Section II presents an overview of CSP and the most
likely CubeSat attack mechanisms. Section III defines the
threat model associated to this research, followed by a descrip-
tion of the proposed IDS in Section IV. Experimentation results
are presented in Section V. Finally, the conclusion discusses
key findings, main challenges and work directions.



Fig. 1. CSP Protocol Packet Header Structure.

Fig. 2. CSP over CAN Packet Structure.

II. BACKGROUND ON CSP AND RELATED ATTACK
MECHANISMS

In this section, we present an overview of the CubeSat
Space Protocol (CSP) and the associated packet format, as
these concepts are important to understand security challenges
and properly define the most likely attack mechanisms.

A. Overview of CubeSat Space Protocol

1) CSP protocol [4]: is a compact protocol stack imple-
mented in the C programming language. Tailored for sim-
plifying communication among distributed embedded systems
within more confined networks like Cubesats, CSP adheres
to the TCP/IP model. It encompasses a transport protocol,
a routing protocol, and various MAC-layer interfaces in its
design. The transport protocol ensures reliable end-to-end
communication, while the routing protocol manages the effi-
cient flow of data within the network. The inclusion of various
MAC-layer interfaces as Controller Area Network (CAN) and
Inter-Integrated Circuit (I2C) allows for compatibility with
diverse hardware configurations. The concept revolves around
providing Cubesats sub-system developers with the same func-
tionalities as a TCP/IP stack, but without incorporating the
substantial overhead associated with the IP header. The limited
footprint and simple implementation enable seamless integra-
tion into a compact 8-bit system, ensuring full connectivity
within the network. This service-oriented approach allows all
subsystems to offer their services at the same network level,
eliminating the need for a central master node. Its design caters
to embedded systems characterized by extremely constrained
CPU and memory resources as AVR (8-bits et 32-bits) and
ARM (32-bits). The main CSP implementation is created using
GNU C and successfully adapted for execution on FreeRTOS,
Zephyr, and Linux (POSIX).

2) CSP packet structure: There are two main versions of
CSP: 1.x characterized by a 32-bit Header, and 2.x character-
ized by a 48-bit Header. The main difference being the size
of the source and destination addresses, larger in version 2.x
(14 bits) than in 1.x (5 bits) to support a greater number of
ECUs. As shown in Fig.1, the CSP packet header used in
our university project (Version 1.4) includes a priority field

and source/destination addresses and ports. The port range
is segmented into three customizable sections. The initial
segment, spanning from port 0 to 7, serves general purposes
like ping, task list and buffer status and is managed by the
CSP service handler. Ports 8 to 47 are designated for services
specific to subsystems. The remaining ports, ranging from 48
to 63, are ephemeral and designated for outgoing connections.
Additionally, bits 28 to 31 are used for packet marking,
encompassing HMAC, XTEA encryption, RDP header, and
CRC32 checksum. regarding the data field, it can go up to
65535 bytes.

3) CSP over CAN: CSP can be configured to communicate
using CAN-bus interface, which uses CAN 2.0B extended
frame format [5]. CSP Transport Layer takes care of packet
fragmentation into CAN-frames of 8 bytes, and only a fully
completed packet will arrive at the CSP receiver. The first
CAN packet must include CSP packet header and length of
the payload. If there is any payload, up to 2 bytes of payload
is added to the first CAN packet as well. All the other packets
contain only payload of the CSP packet. When communicating
via the CSP protocol, the CAN packet consists of the following
fields Fig.2:

• Start of Frame (SOF): denotes the start of frame
transmission,

• Identifier A: first part of the (unique) identifier which
also represents the message priority:

[10..6] - Source CSP ID,
[5..1] - Destination CSP ID,
[0] - CAN start packet (0) / CAN next packet (1),

• Substitute Remote Request (SRR): must be recessive
(1),

• Identifier Extension bit (IDE): must be recessive (1) for
extended frame format with 29-bit identifiers,

• Identifier B: second part of the (unique) identifier which
also represents the message priority:

[17..10] - A number of remaining CAN packets,
[9..0] - CFP identification number,

• Remote Transmission Request (RTR): must be dom-
inant (0) for data frames and recessive (1) for remote
request frames,



(a) (b) (c)

Fig. 3. Common CAN attack mechanisms (a) Message flooding DoS attack - (b) Fuzzy injection attack - (c) Replay attack

• FD Frame (FDF): must be dominant (0) to interpret bit
sequence as classic and recessive (1) as FD frame,

• Reserved bit: reserved bit must be set to dominant (0),
but accepted as either dominant or recessive,

• Data Length Code (DLC): number of bytes of Data field
(0–8 bytes),

• Data field: contains the actual data being transmitted. It
can range from 0 to 8 bytes,

• Cyclic Redundancy Check (CRC): used to check the
integrity of the transmitted data and ensure the reliability
of CAN communication,

• Acknowledgment (ACK): consists of the ACK field and
ACK delimiter. If a ECU receives a message without
errors, it sends an ACK bit,

• End of Frame (EOF): is used for demarcating the end
of the message and ensuring that the bus is ready for the
next frame.

B. CSP over CAN security challenges and attack mechanisms

Originally designed for real-time, safety-critical applica-
tions, CAN lacks authentication and authorization mecha-
nisms, posing challenges in verifying node identity, especially
for components like satellite subsystems. This vulnerability
opens the door to potential compromise or spoofing of nodes,
allowing for the injection of false or malicious data into
the network. The repercussions of such compromise are far-
reaching, as a single compromised or spoofed node can
adversely impact the entire network, leading to issues such
as congestion caused by the flooding of the network with a
high volume of messages.

The absence of native encryption support in CAN exposes
data to potential eavesdropping or tampering. Exploiting this
vulnerability, attackers can tamper with identifiers, injecting
massive malicious frames with the lowest possible ID (0x000),
thereby gaining permanent priority and causing a Denial of
Service (DoS) situation Fig.3a [6]. Another prevalent form
of attack involves Fuzzing injections, where subtle variations
in transmitted messages, such as changes in data payload
or alterations in message timing, create confusion or disrupt
communication between nodes. Detecting and mitigating these

Fuzzy attacks is challenging, as they often elude traditional
security mechanisms Fig.3b.

Additionally, an unauthorized node can intercept and mali-
ciously resend previously captured messages within the bus.
This replay attack aims to exploit the absence of authentication
and encryption in the CAN communication protocol. By re-
transmitting captured messages, the attacker can manipulate or
disrupt critical functions within the system, posing significant
risks to safety and security Fig.3c.

III. THREAT MODEL

To develop a solution suitable for intrusion detection within
the CSP over CAN, it is crucial to ensure that the design
aligns with a practical threat model reflecting plausible attack
scenarios within the context of a CubeSat project. As a
result, we have identified three primary scenarios deemed most
critical based on their likelihood and potential impact [7].
These scenarios pose a risk of unauthorized access to the
CubeSat CAN bus:

• Scenario 1: An adversary floods the CSP communication
channels with a high volume of malicious traffic, over-
whelming the communication system. This can lead to
a temporary or permanent disruption in communication
between the CubeSat and the ground station, affecting
data transmission and reception.

• Scenario 2: An attacker impersonates a legitimate ground
station or CubeSat by sending forged CSP messages. This
could lead to unauthorized control over the CubeSat or
the interception of sensitive information. The attacker
might manipulate or inject false data into the communi-
cation stream, compromising the integrity of the mission.

• Scenario 3: An adversary intercepts and records legiti-
mate CSP messages and later replays them to deceive
the CubeSat or ground station. This could lead to the
re-execution of certain commands or actions, causing
confusion or disruption to the CubeSat’s operations.

These situations need substantial capabilities from an ad-
versary, such as a rival nation or terrorist organization. They
have the potential to result in the implementation of attacks
that exploit vulnerabilities in the CSP over CAN protocol,
aiming to gain unauthorized access to satellite data (through



Fig. 4. Functional diagram of the proposed distributed CSP over CAN traffic IDS for CubeSats.

traffic sniffing) or, more significantly, disrupt the CubeSat’s
operation, making it inoperative through packets injection. Our
emphasis on examining the most prevalent attacks on the CAN
bus is centered on those that impact the availability of the
CubeSat, as DoS packets flooding, fuzzy injection and replay
attacks. Confidentiality concerns, on the other hand, can be
mitigated by enabling CSP encryption tool based on the XTEA
algorithm [8].

IV. PROPOSED SOLUTION

In this section, we present our proposed IDS for CubeSats,
which is a distributed solution based on ANN classification
of CSP over CAN packets. We initially provide a general
overview of this solution, before describing each functional
step, including the developed on-board detection module.

A. General overview

With the aim of designing an IDS adapted to the constraints
inherent to CubeSats systems, and as shown in Fig.4, the pro-
posed solution is based on a distributed architecture where the
space segment which uses pre-trained ANN inference models,
allows classification of CAN packets following two steps: a
first time-based detection step then a second which analyzes
packets data field if necessary. The ground segment, for its
part, makes it possible to conduct all energy-intensive training
operations on the basis of the various detections notified by
the CubeSat, before scheduling periodic improvements for the
on board detection module through firmware updates.

B. Functional description

1. Traffic extraction: initially intrusion detection requires
capturing the CAN traffic transmitted through the Cube-
Sat bus. An effective approach for this task involves the
use of a hardware-based CAN sniffer designed for de-
ployment on a Field Programmable Gate Array (FPGA).
It’s noteworthy that the same FPGA can be deployed
to run the other detection functions needed onboard the
space segment. To guarantee an efficient packets extrac-
tion, we adopted the CAN traffic sniffing mechanism
suggested by [9]. This method relies on the fact that
the CAN bus utilizes Non-Return-to-Zero bit coding,
employing a simple counting and division technique for
synchronization with the clock.

2. Time-based ANN classifier of CAN packets:
Sniffed CAN traffic is then classified using an ANN
inference model that evaluates the arrival time of the
packets (timestamps) in combination with the CAN IDs.
Before the CubeSat is launched, this module is trained
to detect anomalies based on the evaluation of packet
frequencies using various representative datasets. The
time-based CAN packets classifier has proven its high
capacity in detecting DoS flooding attacks and fuzzing
injections. The detection rates of this ANN classifier are
presented in Section V.

3. Data-based ANN classifier of CAN packets:
After the classification of CAN packets by the time-
based model, a second classification is performed with
the aim of broadening the detection spectrum to other



Fig. 5. Overall flowchart of our on-board detection module.

forms of more complex intrusions. These cannot be
effectively detected by evaluating packet frequency alone,
and therefore require inspection of the data field. Just
like the previous model, this classifier based on an ANN
must be pre-trained beforehand on the detection of this
type of anomalies such as Replay attacks, using suitable
Datasets. The significance of our solution is based in
the separation between the straightforward analysis of
packets frequencies and the more in-depth inspection
required for their payload. Additionally, the training pro-
cess is decentralized at the ground segment level. The
fundamental idea behind these modules is to achieve
a balance between detection rates and efficiency. The
algorithm developed for the on-board time- and data-
based detection module is illustrated in the flowchart
presented in Fig.5.

4. Intrusion notification: When one of the two classifiers
detects an anomaly in one or more packets, a notification
is directly scheduled so that it is transmitted with high
priority to the ground segment during the next pass
(Acquisition of Signal AoS).

5. Time- and Data-based classification modules training:
As soon as they arrive on the ground, malicious packets
are directly used to respectively train the time- and Data-
based interference engines. This makes it possible to
continually improve the performance of the detection
modules. The training process initiates with data pre-
processing, involving tasks like handling missing values,
normalizing features, and encoding categorical variables.

The ANN architecture is carefully crafted, incorporat-
ing well-suited activation functions (ReLu and Sigmoid
functions), loss functions, and optimizers. To counter
overfitting, regularization techniques such as dropout and
dynamic learning rate planning are employed. Subsequent
to these preparations, thorough experimentation ensues.
This encompasses fine-tuning hyperparameters, exploring
diverse batch sizes (16, 32, 64), epochs (100, 200, 300),
and vigilantly monitoring performance indicators with
the implementation of early stopping mechanisms. The
decentralization of training at the ground station level,
which is a highly energy-intensive task, allows for min-
imizing the operational footprint of the module within
the CubeSat. This strategic approach allows continuous
improvement through regular firmware updates.

6. CubeSat Firmware scheduled update: The distribution
of the training process to the ground segment level,
known for its high energy consumption, enables the
reduction of the workload on the module installed aboard.
Subsequently, the system should be maintained through
periodic updates. These updates extend to both the time-
and data-based modules within the CubeSat, integrated in
routine firmware updates. It is essential to highlight that
the decision to automatically update a deployed model is
triggered by improvements in detection rates especially
in the F1-score.

7. Upload updated Firmware to the CubeSat: Due to
its critical nature, the CubeSat detection module update
is implemented as part of scheduled firmware updates,
aligning with the specific requirements of the mission
and his concept of operation (CONOPS). These enhanced
firmware versions are uploaded to the space segment
promptly upon ensuring the AoS during the planned
update periods.

V. EXPERIMENTAL VALIDATION

After building the proposed architecture and implementing
the associated classification modules, we conducted experi-
ments with these classifiers through representative datasets
of various attack mechanisms related to the adopted threat
model (Section III). The main objective is to illustrate the
detection rates of time- and data-based classification modules
separately and when combined against three common types of
CAN attacks.

A. Datasets

To train and assess the performance of the developed
detection modules, we employed two datasets that represent
three prevalent attacks on the CAN bus. We used CAN net-
work intrusion datasets [10], specifically a DoS attack dataset
including 3,665,770 packets, and fuzzy injection dataset with
3,838,859 packets. For Replay attack, we adopted UAVCAN
attack dataset [11], consisting of 241,320 packets representing
two scenarios of Replay collected in a CAN bus of an
Unmanned Aerial Vehicle (UAV).



Fig. 6. Detection rates of the Time-based ANN detection module against
three common types of CAN attacks.

B. Metrics

To appropriately assess the outcomes of our experiments,
we have opted commonly used metrics in the evaluation of
classification models [12]. Accuracy (1) represents the ratio of
correctly predicted instances to the total instances, providing
an overall measure of a model’s correctness. Precision (2)
measures the accuracy of the positive predictions, indicating
the proportion of true positives (TP) among all instances
predicted as positive. Recall (3), also known as sensitivity or
true positive rate, verifies the ability of a model to identify all
relevant instances, highlighting the ratio of true positives to the
sum of true positives and false negatives (FN). F1-score(4),
a harmonic mean of precision and recall, offers a balanced
assessment by considering both false positives (FP) and false
negatives. It is particularly useful when there is an uneven
distribution between classes or when false positives and false
negatives have different implications.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1score = 2× Precesion×Recall

Precision+Recall
(4)

C. Experimental results

1) Time-based classification results: The ANN time-based
detection module is crafted to perform real-time intrusion
detection onboard the CubeSat by classifying CAN packets
according to their Timestamp and CAN-ID. After the model’s
training on 66.6% of the packets within the three datasets, the
remaining 33.3% was used for testing. As shown in Fig.6, the
outcomes reveal the Time-based ANN model’s effectiveness
in detecting DoS attacks and Fuzzy injections, achieving
accuracies of 99.1% and 96,9% and F1-scores of 97,3%
and 86,5%, respectively. Nevertheless, the time-based model
exhibited limitations in accurately and precisely detecting

Fig. 7. Detection rates of the Data-based ANN detection module against three
common types of CAN attacks.

Replay attacks with an accuracy and precision of 66,3% and
F1-score less than 80%.

2) Data-based classification results: The evaluation of
data-driven ANN classifier was carried out with the aim of
verifying its ability to detect attacks that are difficult to detect
by the time-based module such as Replay attacks. Thus, the
results obtained were very satisfactory thanks to a detection
accuracy of 82.8% and F1-score of 91,1% for Replay attacks
Fig.7. The tests also demonstrated a strong ability to detect
DoS and Fuzzy attacks in the same way as the time-based
model. However, detecting this kind of attacks using the data-
driven model would be more expensive in terms of computing
power and energy consumption, this is mainly due to the large
size of the data field compared to Timestamp and CAN-ID.

3) Combined classification results: Despite the ability of
the data-based ANN module to detect the three attacks studied
alone, it turns out to be less expensive in terms of computing
and energy to initially inspect the sniffed traffic using the time-
based module in view of its good performance against DoS and
Fuzzing attacks. Only a sample of traffic deemed legitimate
by this module will be submitted to the data-based classifier,
with the aim of broadening the range of intrusions detectable
by the system to include Replay attacks. The evaluation of the
combination of the two modules illustrated its effectiveness
in detecting all three attack types with high performance.
For DoS attacks, the detection rates reached approximately
99.87% in accuracy and 99.59% in F1-score. Fuzzy attacks
exhibited detectability at 97.57% accuracy and an F1-score
of 90.23%. In the case of Replay attacks, the combined
module demonstrated the ability to detect this type with an
accuracy of 82.83% and an F1-score of 87.66%. These findings
underscore the content-based module’s capability to address
the limitations of its time-based counterpart, especially in
detecting attacks that do not leave traces in the flow, such
as replay attacks.

VI. CONCLUSION

In this paper, we introduce a cost-effective distributed
Intrusion Detection System tailored for CubeSats, using a
deep learning model for classifying CSP over CAN traffic. the



proposed solution encompasses an onboard detection module
combining time- and data-based ANN classifiers. All training
operations are carried out at the ground segment level. This
distributed methodology aims to reduce the computational
burden on the onboard detection module while providing
comprehensive coverage against a wide range of intrusions.

To evaluate the performance of this IDS, we subjected
it to rigorous testing against three prevalent types of CAN
attacks. The evaluation outcomes demonstrated remarkable
performance, achieving F1-scores of 99.59%, 90.23%, and
87.66% for countering message flooding DoS attacks, fuzzy
injections, and replay attacks, respectively.

These findings underscore the significance of integrating
Deep Learning models in the classification of CAN traffic.
Moreover, the adaptability of our proposed IDS to the specific
requirements of CubeSat systems is highlighted through the
combination of time- and data-based detection modules, ad-
dressing many attack scenarios. Future research endeavors will
concentrate on exploring alternative combinations of ML and
DL models to further enhance detection rates. Additionally,
a comparative analysis of the computational and energy effi-
ciency of various Field-Programmable Gate Arrays (FPGAs)
will be conducted to determine the most suitable deployment
solution for Cubesat projects. Presently, as part of a 3U
university CubeSat initiative, our intention is to implement the
onboard module within an FPGA Zynq-7020 System on Chip
(SoC) integrated with the Software-Defined Radio (SDR) of
the CubeSat. Initial testing of this configuration is conducted
on the engineering model, which is an exact replica of the
flight model intended for launch in the second half of 2024.

ACKNOWLEDGMENT

This work was carried out in the frame of the cooperation
between the Royal Center for Space Research and Studies
(CRERS) and the Mohammed V University in Rabat (UM5R).

REFERENCES

[1] D. Paikowsky, “What Is New Space? The Changing Ecosystem of Global
Space Activity,” New Space, vol. 5, no. 2, pp. 84–88, Jun. 2017. [Online].
Available: https://www.liebertpub.com/doi/10.1089/space.2016.0027

[2] O. Driouch, S. Bah, and Z. Guennoun, “Intrusion detection system for
CubeSats: a survey,” in 2023 International Wireless Communications
and Mobile Computing (IWCMC), Jun. 2023, pp. 596–601, iSSN: 2376-
6506.

[3] M. Manulis, C. P. Bridges, R. Harrison, V. Sekar, and A. Davis, “Cyber
security in New Space: Analysis of threats, key enabling technologies
and challenges,” Int. J. Inf. Secur., vol. 20, no. 3, pp. 287–311, Jun.
2021. [Online]. Available: https://link.springer.com/10.1007/s10207-
020-00503-w

[4] CSP, “The Cubesat Space Protocol — Cubesat Space Protocol.”
[Online]. Available: https://libcsp.github.io/libcsp/

[5] M. D. Natale, H. Zeng, P. Giusto, and A. Ghosal, Understanding
and Using the Controller Area Network Communication Protocol:
Theory and Practice. Springer Science & Business Media, Jan. 2012.
[Online]. Available: https://doi.org/10.1007/978-1-4614-0314-2

[6] Z. Bi, G. Xu, G. Xu, M. Tian, R. Jiang, and S. Zhang, “Intrusion
Detection Method for In-Vehicle CAN Bus Based on Message and
Time Transfer Matrix,” Security and Communication Networks, vol.
2022, p. e2554280, Mar. 2022, publisher: Hindawi. [Online]. Available:
https://www.hindawi.com/journals/scn/2022/2554280/

[7] O. Driouch, S. Bah, and Z. Guennoun, “A Holistic
Approach to Build a Defensible Cybersecurity Architecture
for New Space Missions,” New Space, Aug. 2023, publisher:
Mary Ann Liebert, Inc., publishers. [Online]. Available:
https://www.liebertpub.com/doi/abs/10.1089/space.2022.0029

[8] J. Yu, G. Khan, and F. Yuan, “XTEA encryption based novel
RFID security protocol,” in 2011 24th Canadian Conference
on Electrical and Computer Engineering(CCECE), May 2011,
pp. 000 058–000 062, iSSN: 0840-7789. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/6030408

[9] N. Jayarathne and M. K. Jayananda, “Development of a field
programmable gate array based Controller Area Network sniffer,” in
2013 IEEE 8th International Conference on Industrial and Information
Systems, Dec. 2013, pp. 610–615, iSSN: 2164-7011. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/6732054

[10] H. Song and H. Kim, “HCRL - CAN network intrusion datasets.”
[Online]. Available: https://ocslab.hksecurity.net/Datasets/car-hacking-
dataset

[11] D. Kim, Y. Song, S. Kwon, H. Kim, J. D. Yoo, and H. K. Kim,
“UAVCAN Dataset Description,” Dec. 2022, arXiv:2212.09268 [cs].
[Online]. Available: http://arxiv.org/abs/2212.09268

[12] A. Binbusayyis and T. Vaiyapuri, “Identifying and Benchmarking Key
Features for Cyber Intrusion Detection: An Ensemble Approach,” IEEE
Access, vol. 7, pp. 106 495–106 513, 2019, conference Name: IEEE
Access.


