
Security Challenges of Complex Space
Applications: An Empirical Study

Tomas Paulik
Department of Computer Science and Technology

University of Cambridge
United Kingdom
tp530@cam.ac.uk

Abstract—Software applications in the space and defense
industries have their unique characteristics: They are complex
in structure, mission-critical, and often targets of state-of-the-
art cyber attacks sponsored by adversary nation states. These
applications have typically a high number of stakeholders in
their software component supply chain, data supply chain, and
user base. The aforementioned factors make such software
applications potentially vulnerable to bad actors, as the widely
adopted DevOps tools and practices were not designed for high-
complexity and high-risk environments.
In this study, I investigate the security challenges of the devel-
opment and management of complex space applications, which
differentiate the process from the commonly used practices. My
findings are based on interviews with five domain experts from
the industry and are further supported by a comprehensive
review of relevant publications.
To illustrate the dynamics of the problem, I present and discuss
an actual software supply chain structure used by Thales Alenia
Space, which is one of the largest suppliers of the European Space
Agency. Subsequently, I discuss the four most critical security
challenges identified by the interviewed experts: Verification
of software artifacts, verification of the deployed application,
single point of security failure, and data tampering by trusted
stakeholders. Furthermore, I present best practices which could
be used to overcome each of the given challenges, and whether
the interviewed experts think their organization has access to the
right tools to address them. Finally, I propose future research
of new DevSecOps strategies, practices, and tools which would
enable better methods of software integrity verification in the
space and defense industries.

Index Terms—Cybersecurity, software development life cycle,
DevOps, DevSecOps, code injection, distributed systems, mi-
croservices, blockchain.

I. INTRODUCTION

Software development life cycle (SDLC) is a process which
covers all the stages of software: formation, requirements
planning, design and construct, testing, and product release
[1] [2]. The last three of these stages can be integrated and
automated using specialized tools and practices for develop-
ment and IT operations, otherwise known as DevOps. These
tools and practices can be viewed as a progression of Agile
methodologies, which emphasize working software, collabo-
ration, speed, and fast response to change [3]. Formally, we
can define DevOps as a “collaborative and multidisciplinary
effort within an organization to automate continuous delivery
of new software versions, while guaranteeing their correctness
and reliability” [4].

DevOps are currently a widely adopted practice in the
software industry [5] [6]. The adoption is primarily driven
by the gains in the business value DevOps can deliver [7].
However, the automated continuous delivery of software has
created new challenges for the DevOps practitioners. One such
challenge is keeping the security of the resulting software
artifacts while maintaining the agile nature of the software
development process [8].

The concept of putting emphasis on security within the
DevOps process has led to the creation of a spin-off term,
DevSecOps, meaning development, security, and operations.
In academic literature, there is no single definition of DevSec-
Ops, although generally, the term refers to security practices
and testing being performed early in the SDLC [9].

OWASP DevSecOps Maturity Model is a popular open-
source theoretical framework which defines security measures
that could be applied when using DevOps strategies, and the
ways these measures can be prioritized [10]. It recognizes
five levels of security measures (i.e., levels 1 to 5), available
along five security dimensions: Build and Deployment, Culture
and Organization, Implementation, Information Gathering, and
Test and Verification. Each of the dimensions consists of
multiple security practices, where each practice is associated
with one security level.

Even though OWASP DevSecOps Maturity Model and
similar frameworks are comprehensive, as I present later in
the study, there is a need for further research of DevSecOps
strategies, practices and tools which would enable stricter
methods of software integrity verification.

To introduce the context of the DevSecOps practices in
the space and defense industries, I present below an actual
software supply chain structure used by Thales Alenia Space
(TAS). The company is a provider of space-based systems,
including satellites and ground segments, used for navigation,
telecommunications, earth observation, space exploration, and
scientific research. TAS is also one of the key technical
contributors to Galileo—a global satellite navigation system
operated by the European Union Agency for the Space Pro-
gramme [11].

Fig. 1, published with permission of TAS, illustrates the
entire flow of software from third-party component suppliers
to the mission center and satellites in space. The following are
the descriptions of the corresponding segments of Fig. 1.

European Space Agency • Security for Space Systems (3S) 2024 1



Fig. 1. An actual software supply chain structure used by Thales Alenia Space for ESA programs such as Galileo, Copernicus, and IRIS2.

1) Software suppliers: Third-party companies developing
building blocks such as components, libraries, or entire
microservices [12]. The suppliers usually form a multi-
level structure (i.e., supply chain).

2) TAS Software Factory: The company’s internal devel-
opment department responsible for the assembly of the
final software deliverables for the end-client, such as
the European Space Agency (ESA). TAS uses their own
cloud infrastructure for the DevSecOps purposes.

3) Integrated software: After the final assembly, the soft-
ware is subject to rigorous in-house integration testing
(at TAS), with the utilization of a dedicated testing
hardware.

4) Operational software: The software deployed on the
operational infrastructure of the customer. Depending
on the project, such infrastructure might include ground
stations, satellite control center, mission center, launch
site (i.e., spaceport), and satellite manufacturing facility.

5) Satellite in space: A device equipped with its own appli-
cation software and controlled by Operational software.

Lightning icons in Fig. 1 represent points of possible
security vulnerabilities, as identified by TAS. Attack vectors
which could be applied to these points include malicious code
injection, insider attack, and man-in-the-middle attack.

Below are the main points of difference between common
commercial software supply chains and the supply chain
outlined in Fig. 1:

1) ESA space programs developed by TAS and their sup-
pliers include Galileo (satellite navigation), Copernicus
(earth observation), and IRIS2 (Infrastructure for Re-
silience, Interconnectivity and Security by Satellite). For
adversary nation states, these programs present high-
value targets and are subject to state-of-the-art cyber
attacks.

2) Programs listed in the previous point are subject to
legal requirements, as some aspects of these programs
might have military applications and could be a matter
of national security. Additional requirements might be
imposed by the funding body or the development con-
sortium itself. Furthermore, the participating companies
might have their own internal requirements, as some of
them might be regulated by their respective jurisdictions.

3) There is no universally adopted public key infrastructure
(PKI) among the European software suppliers in the
space industry, which would enable them to use digital
certificates and public key cryptography to sign their
software artifacts [13]. Such PKI could be used for
the validation of integrity and authenticity of software
packages. Even though a universally adopted PKI would
be an improvement to the current situation, sections V-A
and V-B of this study discuss practical limitations of
such PKI.

4) Due to the previous two points and due to confidentiality
reasons, the companies participating in the supply chain
typically cannot use managed package repositories such
as npm or MyGet.

5) Segments 4 and 5 of Fig. 1 usually consist of a high
number of software applications of different verticals,
ranging from containerized microservices (written in
high-level programming languages) to embedded appli-
cations (written in low-level programming languages).
As a result, software inspection and integration (which
is illustrated in segment 2 of Fig. 1) is harder compared
to traditional commercial software projects, and requires
a team of computer scientists of different backgrounds.

6) Deep supply chains where some of the software artifacts
are in a binary format are highly vulnerable to bad
actors, especially if the malicious code is injected at
the early levels of the supply chain. The deeper the
malicious code is encapsulated under the layers of
deliverables, the harder it is to discover such code.

As for the research gap, limited research has been conducted
on the specific needs of the development teams working in
space and defense industries, and whether the conventional
SDLC process and DevSecOps practices cover the security
needs of such teams.

The goal of this study is to investigate the real-world secu-
rity challenges of the SDLC of complex space applications,
which differentiate the process from the traditional SDLC.
Given the high sensitivity of the matter, I have conducted
anonymized interviews with five problem domain experts. The
reason for anonymity was to enable the experts to speak
freely about the security challenges they are aware of at their
organization, or at their supplier and partner organizations.

European Space Agency • Security for Space Systems (3S) 2024 2



During the interviews, the experts were not presented with
a predefined list of security challenges. Instead, they were
encouraged to present their own views. After the interviews,
I analyzed and aggregated the answers, and produced a set
of four top-most challenges, which are presented in this
study. Each of the challenges is accompanied by a discussion
supported by conventional literature review.

This study aims to address the following research questions:
• RQ1: What security challenges of the SDLC process of

complex space applications pose the highest risk for the
organizations using such applications?

• RQ2: For each of the security challenges, do the organi-
zations developing such applications have the right tools
to address the given challenge?

The motivation of conducting this study is to openly present
the academics, researchers, and professionals in the space and
defense community a holistic view of the real-world security
challenges of their SDLC processes, in contrast to keeping the
discussion centered around theoretical frameworks such as the
OWASP DevSecOps Maturity Model. Specifically, the goal of
this research is to help the space and defense communities in
the following areas:

1) To understand the main SDLC security challenges
present in their industry.

2) To increase the level of awareness (at the given organi-
zations) of the importance of performing a secure SDLC
process.

The rest of the document is organized as follows: Section
II outlines the research methodology. Section III presents the
profiles of the interview participants. Section IV lists the
possible threats to validity. Section V presents the research
results and discussion. Section VI provides a summary of
the interviews. Finally, the conclusion and future work are
presented in section VII.

II. RESEARCH METHODOLOGY

The research presented in this study was carried out using
the steps below:

1) Initial literature review: A conventional literature re-
view was performed to gain a detailed insight into
current trends and topics in the field of DevSecOps.

2) Definition of the research questions: The knowledge
generated by the initial literature review was used to
design the research questions of this study.

3) Interview design: The interviews were intentionally
structured such that they enabled the interviewees to
provide long answers to both questions. The aim was
to gain as many details as possible.
With the first research question (RQ1), the interviewees
were asked to identify and rank five top-most security
challenges with the risk level ranging from 1 to 5, where
5 represents the highest risk. The interviewees were
allowed to use each risk level only once. They were also
allowed to change their previously assigned risk levels
by the end of the interview.

The second research question (RQ2) was asked as a
simple Yes/No question, however, the interviewees were
given the opportunity to further justify their answer.

4) Sampling of the interviewees: Five domain experts
we selected for the interview, such that they represent
an entire spectrum of the given industrial segment and
its wider ecosystem. The interview participants are of
diverse backgrounds, and work at organizations ranging
from tech startups to multinational conglomerates.

5) Analysis of the interview responses: The transcripts of
the responses were analyzed using the Content Analysis
methodology [14]. This methodology was used to ex-
amine patterns in the interviews in a systematic manner.

6) Selection of the most critical challenges: The sums of
the risk levels assigned by the interviewed experts were
used to score the security challenges. The challenges
with the highest overall score were selected for further
investigation. However, given that the interviewees were
allowed to name any security challenges (in contrast
to choosing them from a predefined list), only four
challenges were independently identified by at least two
experts, where the overall score exceeded 5.

7) Further literature review: A conventional literature
review was performed to gain further knowledge about
the top four security challenges. The new knowledge,
combined with the insights gained during the interviews,
is presented in section V.

III. PROFILES OF THE INTERVIEW PARTICIPANTS

Table I contains an anonymized overview of the profiles of
the interview participants.

TABLE I
PROFILES OF THE INTERVIEW PARTICIPANTS

Role within the orga-
nization

Organization type Region

Chief technology offi-
cer

Software startup in the space
industry with less than 50 em-
ployees.

EU

Chief product security
officer

Space technology manufac-
turer with less than 10,000 em-
ployees.

EU

Technical officer Intergovernmental organization
devoted to space activities with
less than 3,000 employees.

Europe
and
North
America

Senior-level software
engineer

Multinational aerospace corpo-
ration with less than 150,000
employees.

EU

Software architect Developer of industrial solu-
tions and simulation software
in the field of aeronautics with
less than 2,000 employees.

EU

IV. THREATS TO VALIDITY

This study is subject to the following threats to validity:
1) Construct validity: The final set of the security chal-

lenges extracted from the interviews and their order may
be influenced by the personal bias of the author and the

European Space Agency • Security for Space Systems (3S) 2024 3



objectivity of the presented set cannot be verified. The
prioritization of the challenges depends on the personal
opinions of the interviewed experts.

2) External validity: The presented results cannot be gen-
eralized as the study has been conducted with only five
participants.

V. RESEARCH RESULTS AND DISCUSSION

The following four security challenges have been identified
by the interviewed experts as the most critical for a secure
SDLC process of complex space applications (RQ1). The
challenges are ordered by risk level, starting with the highest
one. Each of the sections below ends with an aggregated view
of the interviewed experts on whether their organization has
the right tools to address the given security challenge (RQ2).

A. Verification of Software Artifacts

As discussed in section I of this study, the software applica-
tions in the space and defense industries are built using a wide
variety of programming languages and frameworks, depending
on their vertical and use. While applications running on
satellites are typically written in languages such as C, C++,
and Rust, control center and mission center applications are
predominantly written in dynamic programming languages.
Both of these groups of languages can be subject to a malicious
code injection performed by a sophisticated attacker, however,
it is the latter that is particularly vulnerable to such attack.
Dynamic programming languages such as JavaScript and
Python are consistently among the most popular in the world
by almost any measure [15]. Frameworks based on these lan-
guages, including React [16], Node.js [17], and PyTorch [18]
are leaders in their respective application verticals: Front-end
applications, API services, and machine learning applications.
Ironically, both programming languages were designed in early
1990s as easy-to-learn languages aimed towards hobbyists
and semi-professional developers, prioritizing simplicity of
use over professional features and practices [19] [20]. The
heritage of such philosophy can be seen even three decades
later—applications (and software packages) produced in both
languages are usually deployed to production (or to the pack-
age repository) without compilation into a machine code (or
other binary format, such as Bytecode or MSIL). To illustrate
the nature of the problem, let’s consider the following scenario:

1) A developer at a fictional company Supplier 1 is working
on a software application (Application 1) written in
JavaScript or TypeScript programming language.

2) The developer clones a git repository with Application
1’s source code to their computer.

3) The git system of Supplier 1 uses two-factor authenti-
cation, branch permissions, and other best practices in
terms of software security.

4) The repository is cloned on the developer’s computer.
The developer runs the “npm install” command to re-
store the project’s dependencies.

5) A sophisticated attacker who has access to the devel-
oper’s file system modifies one of the restored JS files

and adds malicious code. (Alternatively, the attacker
could use a man-in-the-middle network attack to change
the content of one of the dependencies during the
restoration.)

6) The developer writes some new code and creates a pull
request. The malicious code added by the attacker stays
invisible, as the “node modules” folder containing the
dependencies is listed in the “.gitignore” file.

7) A co-worker of the developer reviews the pull request
and approves it (which is perfectly reasonable, as the
malicious code is not included in the commit due to
the presence of the “.gitignore” file). All the unit tests
and static code analysis tests pass. The new code is
now part of the main development branch. Git commits
internally use SHA-1 hashes to ensure the consistency
of the content.

8) The developer switches their local git repository to the
main branch as they intend to build the application. For
additional security, the developer executes “npm audit
signatures”. The audit completes successfully, all the
packages have verified registry signatures.

9) The developer builds the application using “npm run
build”. At this point, the malicious code is included in
the build output. The “package-lock.json” file contains
SHA-512 hash codes of the modules (one of which is
altered), although the integrity of the modules is not
verified at this stage. (Alternatively, the steps 5 to 9 can
be applied to a different pipeline where the build artifacts
are produced by a CI/CD build agent. In such a case,
the attacker needs to get access to the computer which
hosts the build agent. Building and testing of artifacts
in virtual environments is recommended by the OWASP
DevSecOps Maturity Model.)

10) The developer uploads the assembled version of Appli-
cation 1 to a secure cloud storage. With the belief of
enhancing the security further, the developer manually
creates a hash code of Application 1 and sends it to
the customer organization (Supplier 2) up in the supply
chain.

11) A developer working at Supplier 2 downloads Appli-
cation 1 from the secure storage. The download is
seamless, performed via HTTPS connection with the
use of a strong cryptographic protocol TLS version 1.3.
The developer at Supplier 2 manually verifies the hash
code provided by Supplier 1. The hashes are identical,
everything looks correct.

12) Supplier 2 creates a new version of their own applica-
tion, Application 2, and creates an application bundle
consisting of both applications. The application bundle
is sent up in the supply chain. At this stage, the infected
code is buried too deeply to be discovered.

13) A perfect illusion of security is preserved throughout the
entire process. DevSecOps practices are in place at all
the participating organizations. And yet, their code base
is infected.

European Space Agency • Security for Space Systems (3S) 2024 4



The OWASP DevSecOps Maturity Model specifically rec-
ommends “Signing of artifacts” in their “Build and Deploy-
ment” dimension of level 5. However, when exploring the
recommendation further, it only refers to git commit signing
by the author. The recommendation is not covering signing
(and integrity verification) of dependencies and build outputs.
Generally, it would be difficult to make such a recommenda-
tion in a theoretical framework as, at the time of the writing,
there is no publicly available tool or service which would
provide functionality comprehensive enough to prevent the
code injection attack vector outlined above.

All the three interviewed experts who have identified the
challenge think their organization doesn’t have the right tools
to address the challenge. One interviewee has stated that this
challenge presents for their organization a major issue, because
the inability to trace the origin of a compromised software
artifact means that the supplier responsible for the breach of
security cannot be held accountable.

B. Verification of The Deployed Application

A successful deployment of an application to a remote
server might be the last step of the DevOps process, although it
is not the end of the application’s life cycle [2]. Let’s consider
a scenario where we have an API application written in Python
and FastAPI [21], deployed on a virtual machine (VM), and
hosted in a cloud environment. Even if the application is
meant to continuously run on the server from the deployment
until the release of its next version, chances are that the
application will be occasionally terminated and started again.
This is because the VM might be restarted due to the technical
needs of the underlying infrastructure, or due to an operating
system update. A technically advanced attacker might utilize
the opportunity to modify the code of the application during
the start of the operating system. Such change would be almost
unnoticeable using the common application health monitoring
practices.

A seemingly straightforward way of solving the problem
would be to use Code Signing – a technique to confirm the
software author and guarantee that the code has not been
altered or corrupted since it was signed [22]. However, the
interviewed experts have confirmed that there is no public key
infrastructure (or an equivalent mechanism) across the supply
chain of European software companies, which would enable
them to practice Code Signing. According to the interviewed
experts, the absence of the public key infrastructure is largely
a non-technical problem, of solving which would require a
lot of business and political negotiations. Regardless of the
non-technical aspects, Code Signing as a technique could be
insufficient for mission-critical applications. Academic liter-
ature provides several articles on “certified malware” [23],
illegal trading of signing certificates [24], and abuses of the
authentication mechanism [25].

Much like the challenge outlined in section V-A, the veri-
fication of deployed applications on the level of the operating
system is, at the time of the writing, a difficult open problem
with no clear best practices or technical consensus among

the European software suppliers in the space and defense
industries.

Two out of three interviewed experts who have identified
the challenge think their organization doesn’t have the right
tools to address the challenge.

C. Single Point of Security Failure

The idea behind this challenge is that a single vulnerability
of a small software component can compromise the security
of a large software infrastructure. This phenomenon is well-
studied, and the literature provides a variety of mitigation
strategies to address the risk [26] [27]. Even though the idea
is not new, it is understandable that the interviewed experts
are concerned about the potential business damages caused by
this scenario.

A general best practice to address the risk is to design
the application as a set of microservices during the design
stage of the SDLC, in contrast to choosing the monolithic
architecture [12]. Microservices are an architectural pattern
which divides the application into multiple loosely coupled,
fine-grained services, communicating through a lightweight
protocol. The advantage of the architecture is that each of
the smaller services is easier to test, maintain, and scale
[28]. From the security perspective, compromising the secu-
rity of a single microservice doesn’t automatically affect the
other microservices of the application, although depending on
the vulnerability, the problematic code component might be
present in other microservices.

The OWASP DevSecOps Maturity Model recommends us-
ing the “Microservice-architecture” in their “Implementation”
dimension of level 5, stating that “monolithic applications are
hard to test.”

All the three interviewed experts who have identified the
challenge think their organization does have the right tools
to address the challenge. One of the experts has expressed
their view that despite the availability of the right tools, the
challenge is one of the highest their organization is facing.

D. Data Tampering by Trusted Stakeholders

Companies in the space and defense industries are typically
large (in terms of the number of employees), have deep supply
chains, and deal with expensive products and components.
Manufacturing defects, failed component tests, and errors in
technical documents can translate into business damages worth
millions of Euros. Therefore, when such damage happens,
the responsible employees have a very strong incentive to
obfuscate their responsibility and move it to a different de-
partment within the company, or up or down the supply chain.
Such obfuscation can be achieved, for example, by manually
changing the records on the company’s database server (by
bypassing the application logic and directly modifying the
data). These practices are criminal in nature, and lead to
disputes, manufacturing delays, and ultimately to financial
losses for the business.

From the technical perspective, this problem can be ad-
dressed by a use of a different type of the underlying database

European Space Agency • Security for Space Systems (3S) 2024 5



system [29]. Instead of using a traditional database such as
relational database (SQL) or non-relational database (NoSQL),
businesses could use a distributed database system based on
a shared immutable ledger. Such a category of systems is
commonly referred to as blockchain databases [30].

When designing a blockchain-based application, businesses
can choose either to use one of the publicly available
blockchain infrastructures, or create their own network of
nodes, where each of the nodes could be, for example, operated
by one of the organizations in the given supply chain. As
a result, businesses could utilize blockchain technology to
increase transparency, trust, and traceability in their own
organization, or within their supply chain.

The two interviewed experts who have identified the chal-
lenge both think their organization does have the right tools to
address the challenge. One of the experts has mentioned that
even though the right tools are available, their organization is
slow in adopting them.

VI. SUMMARY OF THE INTERVIEWS

Table II shows a summary of the identified security chal-
lenges, including their risk levels assigned by the interviewed
experts (RQ1). Table III provides an overview of whether the
interviewed experts think their organization has the right tools
to address the identified security challenges (RQ2).

TABLE II
SUMMARY OF THE IDENTIFIED SECURITY CHALLENGES

Security challenge Risk levels assigned by the
experts

Overall
score

Verification of software
artifacts

5, 5, 4 14

Verification of the de-
ployed application

5, 4, 4 13

Single point of security
failure

4, 3, 2 9

Data tampering by
trusted stakeholders

5, 3 8

TABLE III
OVERVIEW OF WHETHER THE INTERVIEWED EXPERTS THINK THEIR

ORGANIZATION HAS THE RIGHT TOOLS TO ADDRESS THE IDENTIFIED
SECURITY CHALLENGES

Security challenge Organizations with
the right tools

Organizations
without the right
tools

Verification of software
artifacts

0 3

Verification of the de-
ployed application

1 2

Single point of security
failure

3 0

Data tampering by
trusted stakeholders

2 0

VII. CONCLUSION AND FUTURE WORK

In this study, I presented the four most critical security
challenges identified by the interviewed experts: Verification

of software artifacts, verification of the deployed application,
single point of security failure, and data tampering by trusted
stakeholders. These security challenges can be divided into
two categories:

1) The first two challenges are both difficult open problems,
and the interviewed experts stated their organizations
don’t have the right tools to address them.

2) The second two challenges are well-studied problems;
the interviewed experts think their organizations have the
right tools to address them, although dealing with these
challenges is hard from both technical and organizational
perspectives.

As a part of my future work, I would like to further focus
on the findings related to the first two challenges.

As discussed in sections V-A and V-B, complex supply
chains of software components in the space and defense indus-
tries create a potential opportunity for bad actors to perform
advanced attack vectors involving alteration or replacement
of software artifacts. A pre-requirement of such an attack
vector is the attacker’s ability to access the file system on the
developer’s computer, which, on its own, already means the
security of the targeted organization has been compromised.

I would like to conduct further research on DevSecOps
strategies, practices and tools which assume in advance that
one or more developer computers could be compromised.
Such a paradigm would require advanced build tools, much
stricter methods of software integrity verification, and parallel
assembly of software artifacts.

ACKNOWLEDGMENT

I would like to acknowledge the generous support provided
by TAS and all the interviewed experts, who were keen to
openly talk about cybersecurity practices at their organizations.

REFERENCES

[1] N. B. Ruparelia, “Software development lifecycle models,” ACM SIG-
SOFT Software Engineering Notes, vol. 35, issue 3, pp. 8–13, May
2010.

[2] M. Paul, “Official (ISC)2 Guide to CSSLP CBK,” Boca Raton, Fl: CRC
Press/Taylor & Francis Group, 2014.

[3] H. B. Christensen, “Teaching DevOps and Cloud Computing using a
Cognitive Apprenticeship and Story-Telling Approach,” Proceedings of
the 2016 ACM Conference on Innovation and Technology in Computer
Science Education, July 2016.

[4] L. Leite, C. Rocha, F. Kon, D. Milojicic, and P. Meirelles, “A Survey
of DevOps Concepts and Challenges,” ACM Computing Surveys, vol.
52, no. 6, pp. 1–35, Jan. 2020.

[5] M. Krey, A. Kabbout, L. Osmani, and A. Saliji, “DevOps Adoption:
Challenges & Barriers,” Proceedings of the 55th Hawaii International
Conference on System Sciences, January 2022.

[6] N. Forsgren, D. Smith, J. Humble, and J. Frazelle, “2019 Accelerate
State of DevOps Report,” DORA & Google Cloud, 2019.

[7] L. Riungu-Kalliosaari, S. Mäkinen, L. E. Lwakatare, J. Tiihonen, and
T. Männistö, “DevOps Adoption Benefits and Challenges in Practice: A
Case Study”, Proceedings of the 2016 Springer Conference on Product-
Focused Software Process Improvement, November 2016.

[8] H. Myrbakken, and R. Colomo-Palacios, “DevSecOps: A Multivocal
Literature Review,” Proceedings of the 2017 Springer Conference on
Software Process Improvement and Capability Determination, October
2017.

[9] V. V. Sehgal, “Implementing DevSecOps Practices,” Packt Publishing,
December 2023.

European Space Agency • Security for Space Systems (3S) 2024 6



[10] R. Brasoveanu, Y. Karabulut, and I. Pashchenko, “Security Maturity
Self-Assessment Framework for Software Development Lifecycle,” Pro-
ceedings of the 17th International Conference on Availability, Reliability
and Security (ARES 2022), August 2022.

[11] J-L. Issler, A. de Latour, L. Ries, L. Lestarquit, and M. Grondin, J.
Dantepal, “Lessons Learned from the use of GPS in Space: Application
to the Orbital use of GALILEO,” Proceedings of the 21st International
Technical Meeting of the Satellite Division of The Institute of Navigation
(ION GNSS 2008), pp. 719–735, September 2008.

[12] Y. Romani, O. Tibermacine, and C. Tibermacine, “Towards Migrating
Legacy Software Systems to Microservice-based Architectures: a Data-
Centric Process for Microservice Identification,” Proceedings of the
2022 IEEE 19th International Conference on Software Architecture
Companion (ICSA-C), pp. 15–19, 2022.

[13] ors: J. A. Buchmann, E. Karatsiolis, and A. Wiesmaier, “Introduction to
Public Key Infrastructures,” Springer, 2013.

[14] K. Krippendorff, “Content Analysis: An Introduction to Its Methodol-
ogy,” 4th edition, SAGE Publications, 2018.

[15] D. Lu, J. Wu, Y. Sheng, P. Liu, and M. Yang, “Analysis of the popularity
of programming languages in open source software communities,”
Proceedings of the 2020 International Conference on Big Data and
Social Sciences (ICBDSS), August 2020.

[16] A. Boduch, R. Derks, and M. Sakhniuk, “React and React Native,” 4th

edition, Packt Publishing, 2022.
[17] B. A. Syed, “Beginning Node.js,” Apress, December 2014.
[18] E. Stevens, L. Antiga, and T. Viehmann, “Deep learning with PyTorch,”

Manning Publications, 2020.
[19] M. Selakovic, and M. Pradel, “Performance Issues and Optimizations in

JavaScript: An Empirical Study”, Proceedings of the 38th International
Conference on Software Engineering (ICSE), pp. 61–72, 2016.

[20] L. Jun, and L. Ling, “Comparative research on Python speed optimiza-
tion strategies,” Proceedings of the 2010 International Conference on
Intelligent Computing and Integrated Systems, pp. 57–59, 2010.

[21] B. Lubanovic, “FastAPI: Modern Python Web Development,” O’Reilly
Media, November 2023.

[22] D. Cooper, A. Regenscheid, M. Souppaya, C. Bean, M. Boyle, D.
Cooley, M. Jenkins, “Security Considerations for Code Signing,” NIST
Cybersecurity White Paper, January 2018.

[23] D. Kim, B. J. Kwon, and T. Dumitraş, “Certified Malware: Measuring
Breaches of Trust in the Windows Code-Signing PKI,” Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security (CCS), pp. 1435–1448, 2017.

[24] K. Kozák, B. J. Kwon, D. Kim, and T. Dumitraş, “Issued for Abuse:
Measuring the Underground Trade in Code Signing Certificates”,
arXiv:1803.02931v3 [cs.CR], February 2019.

[25] P. Kotzias, S. Matic, R. Rivera, and J. Caballero, “Certified PUP: Abuse
in Authenticode Code Signing,” Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security (CCS), pp. 465–
478, 2015.

[26] J. Ransome, A. Misra, and B. Schoenfield, “Core Software Security:
Security at the Source,” Boca Raton, Fl: CRC Press/Taylor & Francis
Group, 2014.

[27] M. Dowd, J. McDonald, and J. Schuh, “The Art of Software Security
Assessment: Identifying and Preventing Software Vulnerabilities,” Ad-
dison Wesley Professional, November 2006.

[28] R. Mitra, and I. Nadareishvili, “Microservices Up & Running: A Step-
by-Step Guide to Building a Microservices Architecture,” O’Reilly
Media, December 2020.

[29] C. Coronel, and S. Morris, “Database Systems: Design, Implementation,
and Management,” 14th edition, Cengage Learning, 2023.

[30] T. Ahram, A. Sargolzaei, S. Sargolzaei, J. Daniels, and B. Amaba,
“Blockchain Technology Innovations,” Proceedings of the 2017 IEEE
Technology & Engineering Management Conference (TEMSCON), pp.
137–141, 2017.

European Space Agency • Security for Space Systems (3S) 2024 7


