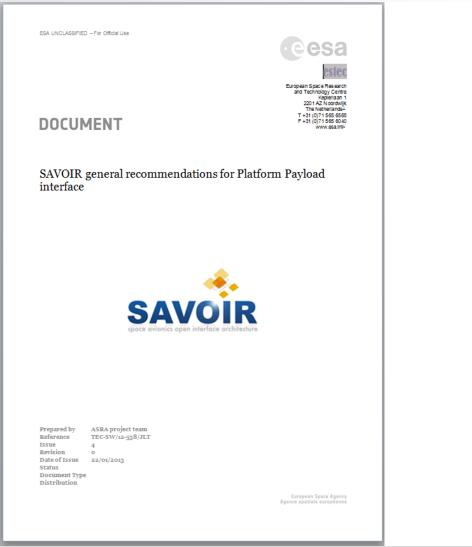


SAVOIR general recommendations for Payload Platform interfaces

Torbjörn Hult

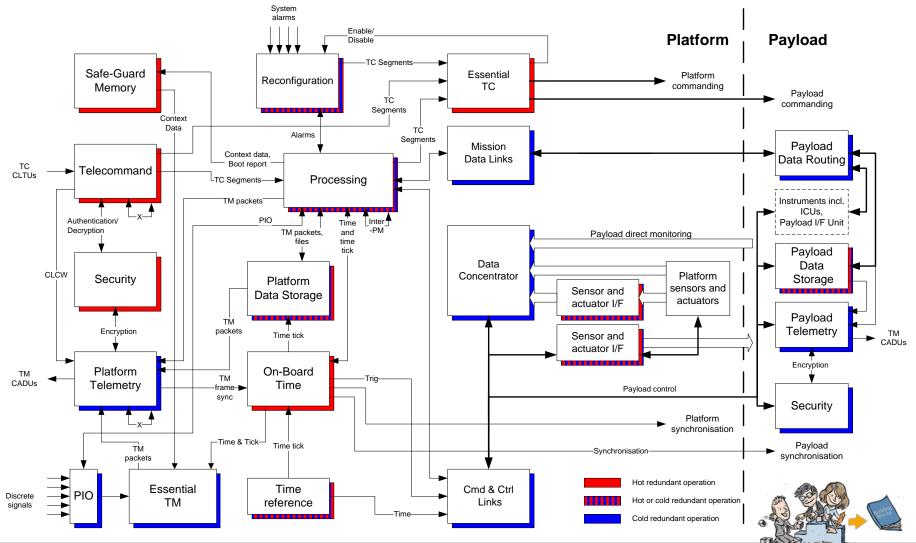
ESA UNCLASSIFIED - For Official Use

Origin of the document



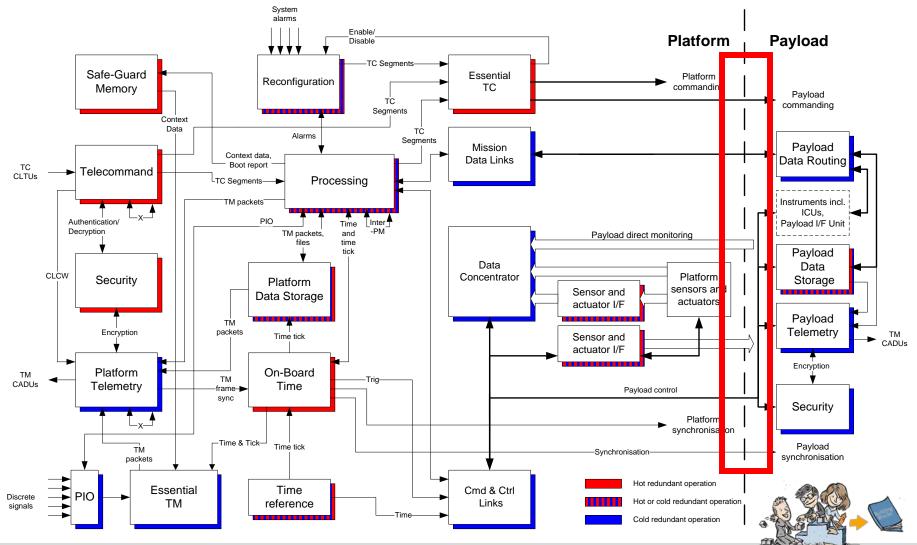
- The SAVOIR general recommendations for Payload Platform interfaces were generated as part of the ASRA (Avionics System Reference Architecture) study.
- ASRA defined an avionics reference architecture meeting the needs of the various mission domains. The work was focused on data management and communications architectures.
- First work package agreed on a common functional architecture and outlined the main functions per functional block and has been presented at earlier ADCSS workshops.
- Four subsequent work packages for generating:
 - Ground to Space interfacing, general recommendations
 - OBC functions, generic specification
 - RTU functions, generic specification
 - Platform/Payload interfacing, general recommendations

Document style



Torbjörn Hult | ADCSS 2014| Pag. 3 ESA UNCLASSIFIED – For Official Use

Avionics functions



Torbjörn Hult | ADCSS 2014| Pag. 4

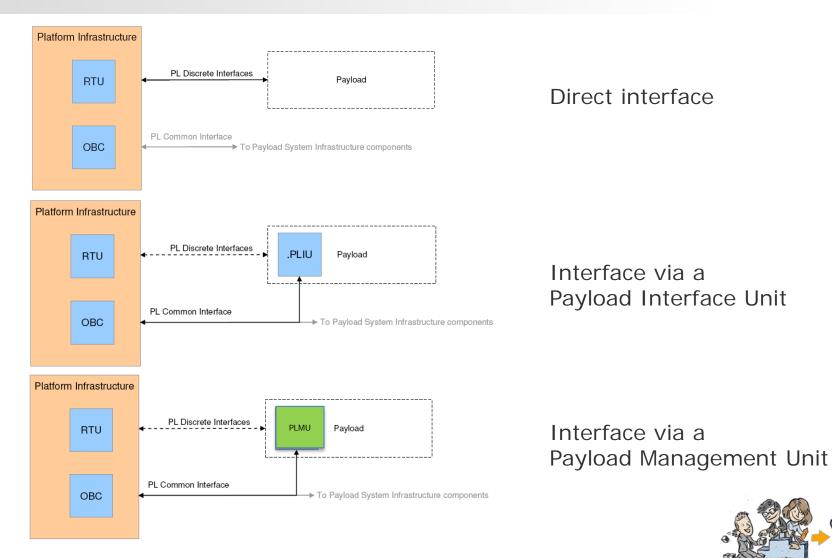
ESA UNCLASSIFIED - For Official Use

Payload platform interfaces

Torbjörn Hult | ADCSS 2014| Pag. 5

ESA UNCLASSIFIED - For Official Use

Document contents

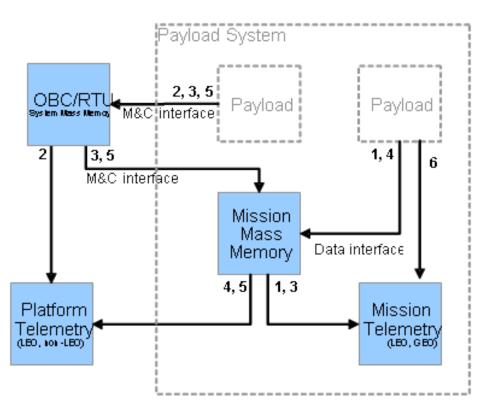


- Common terms are defined
- The interface is seen from two different views:
 - Functional view
 - Time management
 - Active thermal control
 - Payload mission (scheduled) operations
 - Payload contingency operations
 - Payload mission data management
 - Payload being part of platform control loops
 - Downlink of platform data
 - Security services
 - Implementation view (next slide)

Platform to Payload interfacing implementation view

Torbjörn Hult | ADCSS 2014| Pag. 7 ESA UNCLASSIFIED – For Official Use

Deriving the requirements



- The functional view is mapped on each implementation view to establish the requirements for
 - Synchronisation interface
 - Data interface
 - Monitoring and control
 - Time distribution
 - Payload packets
 - Discrete monitoring and control (ECSS-E-ST-50-14C)
 - Protocols for the data interfaces
 - 1553 (ECSS-E-ST-50-13C with detailed Table A1)
 - CAN (awaiting ECSS standardization)
 - SpaceWire (ECSS -12C, -51C, -52C and -53C
 - Power, thermal etc. interfaces are not considered

Analysis of mission data flow for different scenarios

- 1) High data rate
- 2) LEO, low data rate via S-band
- 3) LEO, low data rate via X-band
- 4) Non-LEO, primary payload via X-band
- 5) Non-LEO, secondary payload via X-band

6) GEO

Other factors affecting the interfaces

- The very specific nature of the payload
 - does it need many discrete signals to be monitored and controlled?
 - does it need fast control loops not suitable for implementation in the OBC?
 - are there pointing requirements needing tight coupling between the payload and the platform AOCS?
- The satellite system constraints
 - does the payload need to be monitored and controlled by the platform for spacecraft safety and FDIR reasons?
 - are the power and mission control budgets major drivers of the payload design?
- Programmatic and industrial aspects
 - is the payload procured separately from the platform?
 - can the payload be verified separately?

Recommendations from the ASRA study

- Payload C&C link:
 - 1553, CAN
 - SpaceWire
- Mission data link
- Synchronization signals
- Discrete pulse commands
- Discrete monitoring
- P/F provides nom and red bus
 P/L units interface both
 P/F provides four links
 P/L units interface one, two or four links
 As for SpaceWire C&C link
 P/F provides nom and red for each pulse
 P/L units interface one or both
 Optionally P/L provides sync I/F
 P/F provides nom and red for each pulse
 P/L units interface one or both
 - P/F provides nom and red for each signal P/L units interface one or both
- Full cross-strap capability from the platform
 Full freedom for payload redundancy except for the buses

Other details

- The frequency of a synchronisation signal shall be configurable to 1 or 2*N Hz, where N is an integer between 1 and 8.
- Packetised communication shall follow the PUS standard
- Packetised communication over SpaceWire shall use CPTP
- Packetised communication over 1553 shall use a max packet size same as max data block size
- Memory access type communication over SpaceWire shall use RMAP
 - RMAP not allowed for packetised communication
- Mission data shall be transported over a single interface type
 - Not allowed to use both 1553 and SpaceWire for science data

Contact

Feedback: savoir@esa.int

Torbjörn Hult | ADCSS 2014| Pag. 13 ESA UNCLASSIFIED – For Official Use