

Standardisation of PF/PL Interfaces in the Scope of CNES Initiative for Space Innovative Standards

ADCSS14 ISIS PF-PL interface

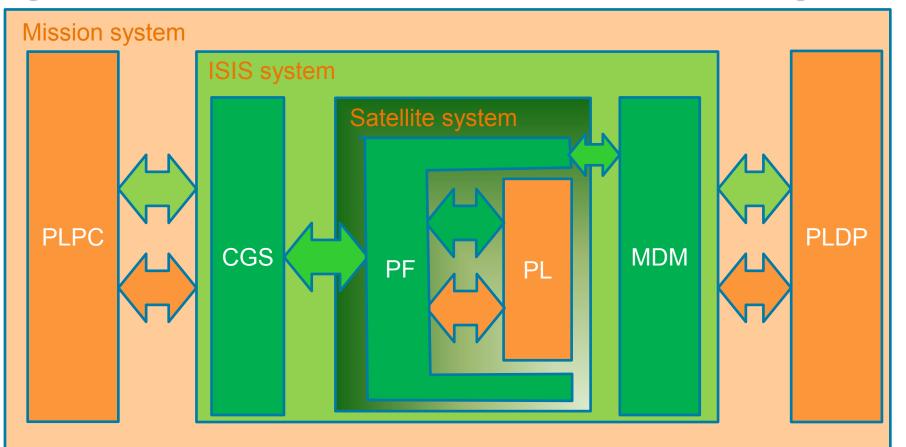
The need for standardization

- Main rationale for standarization of platform to payload interfaces:
 - Reuse => costs reduction, technical and programmatical risks reduction
 - +Well suited to missions in cooperation, or submitted to georeturn
 - Allocation of ressources to innovation rather than to reworking service functions (ex: platforms, MCS...)
 - Anticipation of payload development
 - Step forward towards the « hosted payload » concept
- Well illustrated by the MERLIN and SWOT satellites ITT experience:
 - In both cases, the payload is a CFI
 - Platforms product lines exist, and huge savings are expected, as long as existing solutions are reused <u>as is</u>
 - However: lack of compatibility between product lines
 - » Difficult to freeze PL interface before platform selection
 - » High risk if the platform is selected whithout a clear definition of interfaces
 - » Payload design is slowered by the lack of interface definition

The conditions for reusability

Technical conditions

- Genericity of the functions
- Independance of the functions with regard to each other
- Scalability of the functions
- Stable and well defined interfaces
- Other condition: the standard must be seen by the missions as an opportunity rather than as a constraint
 - The standard must be easily included or referred to in the mission's specification tree
 - Differences with respect to the standard must be easily identified


- Think in terms of platform services to the payload
- Identify independent service functions
- Design the services (function and interfaces), based on state of the art standards (ECSS, CCSDS, MIL...)
- Gather all this information in a document (ISIS platform to PL IRD) easily usable to produce mission specifications
- Design process and tools to ease and master mission specifications generation and maintenance:
 - Missionisation process
 - Identifications of modifications with respect to the ISIS reference
 - Identification of later ISIS modifications impact on user mission

Overview of ISIS concept:

technical interfaces & underlying reference architecture

Legend & acronyms:

- PLPC: PayLoad Programming Center
- PLDP: PayLoad Data Processing
- CGS: Control Ground Segment
- MDM: Mission Data Management (ground stations, TM servers...)

Generic / Product line Mission specific Generic Service (PF or system)

NCE & SPACE

COes

Low level interfaces

- Discrete (TM&TC), according to ECSS-ST-E-50-14C
- Data bus (physical) according to ECSS-E-ST-50-13C
- ISIS GDIR requirements coming from ECSS tailoring and industrial experience
- Power bus characteristics

Intermediate level

1553 protocol (data exchanges according to ECSS-E-ST-50-13C)

High level platform services

- Modes management
 - Definition of standard PL units modes: OFF/STANDBY/OPERATIONAL...
 - Platform services may be enabled/disabled or configured according to the PL unit mode
- TC routing
 - Ground TC are routed by the PF to PL units,
 - based on APID, and possibly on PUS service/subtype fields
- HK TM storage&routing
 - PL TM packets are routed by the PF in packet stores, direct telemetry,
 - Same addressing as TC
- Payload TM management (not yet defined in the ISIS IRD)
 - TM downloading process
 - MM management
 - PF data writing in the PL MM
- Payload basic FDIR
 - 1 FDIR = 1 triplet discrete parameter / criteria / action based on TC sequence or OBCP

The ISIS standard services (3/3)

Thermal control service

- Based on standard temperature acquisition and redounded heaters commanded by the platform
- Acquisitions and power lines are provided by the platform
- Parameters defined by the payload: target & regulation parameters
- Possible standard temperature FDIR associated to each thermal line

Power service

- One power line (possibly redundant) / payload unit
- An ON/OFF LCL and its status
- A current acquisition
- Possible standard FDIR of the current of each line

Time service:

- A HW time reference (discrete PPS, or based on 1553 bus)
- A time message indicating the time stamp of the PPS

Ancillary data service

- Cyclical broadcast of attitude & orbital data (in nominal PF mode)
- Other platform data (SA position, Bus voltage...: mission dependant)

Platform to payload interface is not limited to platform services. Payload design requires assumptions on the platform design:

• Thermal:

- + Attitude in safe mode or during slews, duration of transitions...
- Coupling between platform and payload
- Power allocated to PL thermal control
- Mechanical design:
 - + Handling,
 - Ground and launch environment
 - Field of view constraints from PL to PF and from PF to payload, ...
 - Requirements at mechanical interface (alignments, flatness, ...)
 - AOCS constraints (max rotations velocity, various possible inertia, ...)
- Electrical: power allocation in the different platform modes, EMC
- Beside services definition, the ISIS IRD provides template requirements for all remaining aspects of the interface

Other interface requirements (2/2)

Some requirements on payload may flow down from the system concept:

- Uploading telecommands provided by the PLPC
 - Direct
 - Time-tag
- Providing telemetry to the PLPC
 - Payload data
 - Platform data
- PL telemetry (TBD):
 - Downloading
 - Data distribution
- Short term ground monitoring & reaction
 - Based on board & ground monitoring
 - + Limited to discrete acquisition and a limited number of PL packets transmitted on the data bus
 - Assumptions are required for PL autonomy design
- Platform services management (thermal control, monitoring...)

Electronic data sheet is a good way:

- To structure and define in a formal way the payload information required by the platform
- The platform to import in an efficient & secure way PL data in the satellite database
- To support to configuration management of the interface data

The concept of electronic data sheet could be extended to the ISIS platform services and support platform services configuration

- The ISIS PF to PL interface document (ISIS-SL-IRD-773-CNES) was initiated for MERLIN and SWOT satellites ITTs
- Feedback is very positive from both customer (MERLIN/SWOT CNES team) and prime contractors point of view:
 - Efficient mission IRD generation
 - Good compatibility with primes product lines
 - Good baseline for initial discussion with the payload provider
- Phase B is starting soon: feedback is expected and the ISIS document will be improved with real experience

• In the future:

- +ISIS initiative is local, and usefull only in the frame of CNES missions
- Such an approach would certainly be interesting at European level but should be endorsed by ESA or ECSS
- The ISIS partners will support such an Europeanization and provide ISIS information, as much as needed

