ADCSS 2014

ARCHITECTURAL TRADE-OFFS: AVI ONI CS ARCHITECTURE NONFUNCTI ONAL ANALYSIS

Avionics Modelling Language AAML

 2014, October $28^{\text {th }}$ThalesAlenia
m-m mpace

CONTENTS

1. Introduction and objectives.
2. Process.
3. Use case results.
4. Conclusions and future work.

ARCHITECTURAL TRADE-OFFS: AVIONICS

 ARCHITECTURE NON-FUNCTIONAL ANALYSIS
INTRODUCTI ON AND OBJECTIVES

I NTRODUCTI ON

\square The ESA AAML (Avionics Architecture Modelling Language) study aims at advancing the avionics engineering practices towards a model-based approach.
] Consortium led by GMV:

ThalesAlenia
-m-....Space
[Project Kick-Off Meeting on February 2013.

- Project Acceptance Review on April 2014.

SCOPE AND BACKGROUND

- Defining an avionic architecture for a given project means making several key architecture choices and sizing several performance parameters.
- The selection is usually based on:
- The architect's expertise and background.
- Avionics-specific analyses (to perform trade-offs).

Traditional process:

- Each type of analysis is based on a dedicated model.
- Some training is required to be used effectively.

AAML model-based approach:

- Usage of a single architectural model.
- The same input is used to perform different avionics analyses.
- The analyses cover most of the phases of the life-cycle.

ARCHITECTURAL TRADE-OFFS: AVIONICS ARCHITECTURE NON-FUNCTIONAL ANALYSIS

PROCESS

MODELLI NG PROCESS

Avionics

Functional Definition

- Used to design the avionics system as a set of high-level functions.
- It answers directly to what the avionics is supposed to do.
- Representation of how the system will work so as to fulfil the requirements and expectations of the users.
- It represents how the system will be concretely developed and built using real components.

AVI ONI CS ANALYSIS

- Satellite mode definition, RAMS, FDI R and autonomy concept
- Design consistency and correctness checks
- Commandability and Observability
- Bus/ Network load \& latency analysis
- Space/ ground communication
- Avionic resources analysis
- On-board functions and performance
- Power and mass analysis

MODELLI NG LANGUAGE AND PROTOTYPE

- AAML Modelling Language.
- Domain Specific Language.
- Inspired by the Space Component Model.
] Prototype:
- Demonstrator for a graphical editor (design views) and analyses tools.
- Technology:
o Eclipse.
- Obeo Designer.

- Capabilities:
o Management of an AAML model through the graphical editor.
- Configuration of the avionics analyses from a GUI based on Eclipse wizards.
o Execution of the avionics analyses.
o Identification of model inconsistences.

Viewpoints selection

Selected viewpoints
Change vewponts selection status (see tootip for detals about each

- Avonics Logical View
(4) Avionics Physical View
* Communication View
(4) Mapping View
(8) Non-functional View
(8) © Structural and Data View

TOOLI NG: AVI ONI CS ANALYSES

- Commandability and observability.
- Goal: Size the RF communication system.
- Metrics: Data throughput, link occupation, link occupation margin.
\square Bus load and data latency.
- Goal: Size the MIL-STD-1553B bus and RS-422/RS-232/RS-485 serial links.
- Metrics: Data latency, message transmission time, bus load, bus margin, bus utilization.
o MIL-STD-1553B schedulability analysis.
- On-board functions and performance.
- Goal: Analyse the CPU load and memory sizing.
- CPU Metrics: CPU usage, CPU throughput, CPU usage margin.
- Memory Metrics: Non-volatile/volatile memory size, non-volatile/volatile memory margins.

ARCHITECTURAL TRADE-OFFS: AVIONICS ARCHITECTURE NON-FUNCTIONAL ANALYSIS
 USE CASE RESULTS

USE CASE - DESIGN (1/ 3)

- Functional Architecture Definition.

] Logical Architecture Definition.

- Physical Architecture Definition.

USE CASE - DESIGN (2/ 3)

PDHU UART ACqCMd

- Functional Architecture Definition.
- Logical Architecture Definition.

- Physical Architecture Definition.

	S/C Mode	Type [S/A]	Freq./MIAT [Hz]
\& Operation: GetDoppler	Mode Normal	SYNCHRONOUS	1.0
\diamond Operation: GetITRFNavigation	Mode Normal	SYNCHRONOUS	1.0
\diamond Operation: GetGeodesicalNavigatil	Mode Normal	SYNCHRONOUS	1.0
\& Operation: GetJ2000Navigation	Mode Normal	SYNCHRONOUS	1.0
\diamond Operation: GetDatation	Mode Normal	SYNCHRONOUS	1.0
\diamond Operation: GetRoutine	Mode Normal	SYNCHRONOUS	1.0
\diamond Operation: GetAnomaly	Mode Normal	SYNCHRONOUS	1.0
\diamond Operation: Polling	Mode Normal	SYNCHRONOUS	4.0

$\nabla \square$ Avionic Function S3 Platform Equipments	Logical Component SMU Processor Module
\square Avionic Function PF TTC RF	
\square Avionic Function PF 1553 I/F	Logical Component SMU P/F 1553
$』$ Avionic Function GNSS Sensor	Logical Component GNSS Device
\square Avionic Function STR Sensor	Logical Component STR Device, Logical Component SLSTR Device
$\sqsupseteq A v i o n i c ~ F u n c t i o n ~ P C D U ~ S e n s o r ~$	Logical Component PCDU Device
\square Avionic Function RW Actuator	Logical Component RW Device
\boxminus Avionic Function CRS Sensor	Logical Component CRS Device
\boxminus Avionic Function CSS Sensor	Logical Component CSS Device
$』$ Avionic Function GCS	Logical Component GCS TM, Logical Component GCS TC
\sqsupseteq Avionic Function DORIS Equipment	Logical Component DORIS Device

USE CASE - DESIGN (3/ 3)

PDHU-SRAL RS232/RS422/RS485 Config

- Functional Architecture Definition.
- Logical Architecture Definition.
- Physical Architecture Definition.

	S/C Mode	Type [S/A]	Freq./MIAT [Hz]	Packet Standard
- \downarrow UART Dock: UART1				
- \diamond Operation: GetOLCINormalData \& Packet Standard	Mode Normal	SYnChronous	22.7272	PUS
$\nabla \diamond$ Operation: GetOLCICalibrationData \& Packet Standard	Mode Normal	SYNCHRONOUS	22.7272	PUS
- Event: AckEvent	Mode Normal	ASYNCHRONOUS	22.727274	
\& Packet Standard				PUS

\& Instructions Per Line Of Code (only required for FINE analysis): 5
$\nabla \diamond$ Volatile Memory OLCI SRAM
\triangleleft Data Size: 8 MByte

USE CASE - ANALYSES

C\&O AND BUS LOAD RESULTS

- Commandability and observability.
- TM link at very low level of occupation (1.3-2.6\%).
- TC links:
o Assumption of visibility window of 10 min .

o TC upload of SRAL binary: $7974 \mathrm{bps}, 55.1 \%$ of occupation.
o TC upload of CSW binary: 20796 bps, 143.7\% of occupation.
\square Bus load: 1553B.
- Scheduling: Major frame of 1000 ms and a minor frame of 125 ms .
- Fine-grained analysis computes a bus load of 14%.
- Bus load: UART.
- Fine-grained analysis detects that

Bus 'SRAL_PDHU'		
	Mode 'Normal':	
		Bus load:Bus system load: 118.250046%

Bus system load: 119.00389 \%
Data throughput: 59125020 bps

- After introduction of calibration mode the bus load is reduced to 55.4% (normal) and 62.8\% (calibration).

ThalesAlenia
9nN

ON-BOARD FUNCTI ONS AND PERFORMANCE RESULTS

[On-board functions and performance.

- Firstly, only one EEPROM is used.
- The fined-grained analysis detects:
o Computation of CPU load of OLCI OPSW: 51.6\%.
o SRAM occupation of $\mathbf{3 5 . 7 \%}$ (below 50\%).
o High EEPROM1 occupation: 124.4\% .
- Reallocation of DPM, PCDM, FDIR, PDHU PL and SMU logical components over EEPROM2:
o EEPROM1 occupation: 67.3\%.
o EEPROM2 occupation: 56.9\%.

ARCHITECTURAL TRADE-OFFS: AVIONICS ARCHITECTURE NON-FUNCTIONAL ANALYSIS CONCLUSIONS AND fUTURE WORK

CONCLUSIONS AND FUTURE WORK

- AAML study has provided:
- Identification and evaluation of the avionics analyses.
- AAML modelling language:
o The AAML entities are precise and practical enough for capturing the avionics architecture and to be used as input for specialized avionics analysis.
o It supports the possibility of both coarse- and fine-grained specification by means of the non-functional properties defined.
- AAML toolset:
o It allows the design and analysis of the avionics system through the different development phases.
- Future work activities in the modelling language and the toolset have been identified. Some examples:

Future Work	Priority
Extend the meta-model and toolset to support additional avionic analyses	MEDI UM
Improve the analysis reports output format	MEDI UM
Develop and independent model consistency validator	HIGH
Include hierarchy levels	MEDI UM

Thank you!

Elena Alaña Salazar ealana@gmv.com

Space Systems Business Unit Avionics \& On-Board SW Division

Presented by
Marco Panunzio - Thales Alenia Space marco.panunzio@thalesaleniaspace.com

