

# **GNSS Sensor Interface** Harmonisation

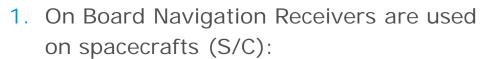
Alberto Garcia-Rodriguez EOP-PPP Massimo Crisci TEC-ETN Alain Benoit TEC-EC



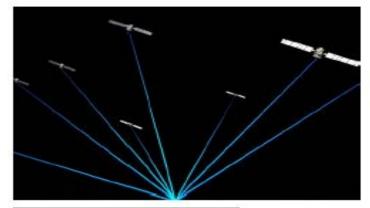
European Space Agency

ESA UNCLASSIFIED - For Official Use






- 1. GNSS Space Receivers Overview
- 2. GNSS Space Applications
- 3. Current Interfaces in GNSS receivers

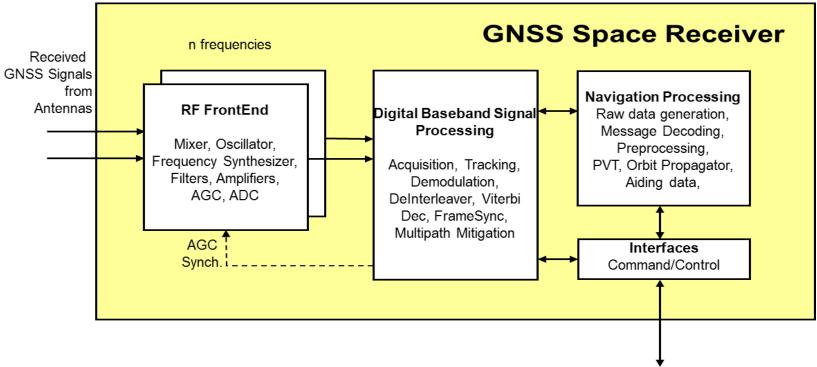

## 4. New Generation of GNSS receivers

5. Conclusions

## **GNSS Space Receivers Overview**



- a) As a **sensor** to determine the S/C PVT (Position, Velocity and Time)
- b) As a EO/Scientific instrument, (Radio Occultation, POD, Reflectrometry)
- 2. Different objectives:
  - a) On board PVT enhances S/C autonomy and reduces mission costs.
  - b) EO & Scientific applications demands high quality measurements, high precision and extensive data processing on-ground.








### **GNSS Space Receivers Overview**





O/B Computer or EGSE



| Application                                   |                        | Accuracy             | Mission Examples                                                                        | Orbit        |
|-----------------------------------------------|------------------------|----------------------|-----------------------------------------------------------------------------------------|--------------|
| Absolute<br>Navigation<br>(AOCS<br>Sensor Rx) | LEO Orbit              | 10-20 m              | PLEIADES, DMC, GlobalStar2G,<br>Proba-2, Demeter, EarthCare<br>COSMO-SKYMED, Radarsat-2 | LEO          |
|                                               | On-board RT<br>LEO POD | 0.3-3 m              | SWARM, GMES Sentinels, Topex-<br>Poseidon                                               | LEO          |
|                                               | GEO/HEO<br>Orbit       | 50-150 m             | STENTOR, SkyLAN, IntelSat, GMP,<br>SmallGEO, STE-QUEST                                  | GEO/<br>HEO  |
|                                               | Launchers              | 15 m                 | ARIANE 6, Evolutions of ARIANE V and VEGA                                               | Grnd/<br>GTO |
| Relative<br>Navigation<br>(AOCS<br>Sensor Rx) | Rendezvous             | 1cm – 10m            | ATV                                                                                     | LEO          |
|                                               | FF                     | LEO: cms<br>GEO: 1 m | GRACE, PRISMA, Proba-3, MMS,<br>TerraSAR-X/TD-X,                                        | LEO/<br>GEO  |



| Application                       |                      | Accuracy         | Mission Examples                                                             | Orbit       |
|-----------------------------------|----------------------|------------------|------------------------------------------------------------------------------|-------------|
| Scientific<br>Instruments         | POD                  | 0.01-2 m         | GOCE, SWARM, GMES Sentinels,<br>CHAMP, GRACE, BIOMASS,<br>DEMETER, STE-QUEST | LEO         |
|                                   | Radio<br>Occultation | cms-<br>0.1 mm/s | MetOp, CHAMP, MetOp2G, COSMIC,<br>OCEANSAT-2, SAC-D, MEGHA-<br>TROPIQUE      | LEO         |
|                                   | Reflectmry           |                  | PARIS IOD, UK-DMC, CYGNSS                                                    | LEO         |
| Support to<br>other<br>subsystems | Attitude             | 0.2° - 1°        | PLEIADES, ROCSAT, TopSat                                                     | LEO         |
|                                   | Time Sync.           | 0.1 µs           | GEO telecom, GlobalStar2G, O3B                                               | LEO/<br>GEO |
| Exploration                       | Moon                 |                  | Lunar Lander                                                                 | LTO         |

European Space Agency
Slide 6

ESA UNCLASSIFIED – For Official Use

## **Current GNSS Space Receivers**



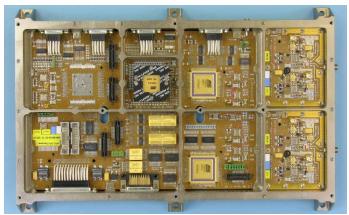
- Currently, several European companies provide space qualified GPS/GLONASS receivers for LEO and GEO orbits
- 2. Different type of products are available:
  - a. Single frequency L1 or dual frequency L1/L2
  - b. GPS only or GPS/GLONASS
  - c. Low cost, based on COTS components, or high-end performance
- Main European players are: Airbus DS(D), TAS-I(I), TAS-F(F), RUAG Space(S), RUAG Space(A), DLR(D), SSTL(UK), Syrlinks(F)

#### Most of them supports both I/Fs MilBus-1553 and UART RS-422

ADCSS 2014 | Slide 7

ESA UNCLASSIFIED – For Official Use

## **Current GNSS Space Receivers**




- Two parallel ESA developments completed in 2007, supporting GPS L1/L2C.
- TopStar2G (TAS-F), with CNES support. Fly demonstration in Proba-2 satellite (2008), used also for GlobalStar2G and O3B constellations
- RUAG (A), Saphyrion (CH).
   Selected by Swarm and GMES Sentinels missions.

PROBA2 L1/L2C FM receiver. TAS-F

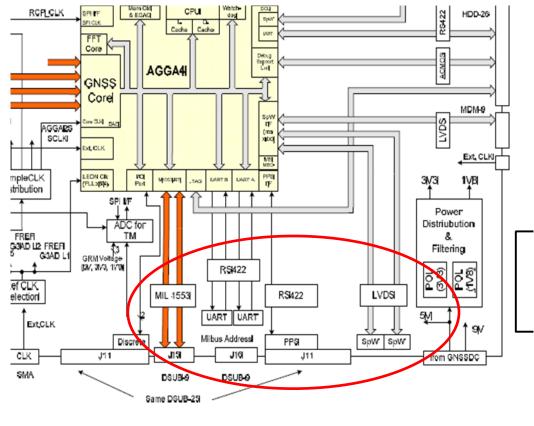


SWARM L1/L2 EM. RUAG (A)



European Space Agency

## **GNSS Receivers New Generation**




- 1. New GNSS systems are being deployed (Beidou, Galileo) and GPS/GLONASS start to transmit new signals
- 2. Several implementations are taking place in different European companies to include the new GPS signals (L2c,L5) and Galileo
- 3. ESA supports two parallel developments, GAMIR:
  - a. GPS/Galileo multi-frequency Rx, tracking all Open signals
  - b. Based on AGGA4 and Saphyrion chipset
  - c. Supports all Interfaces: SpaceWire, MilBus-1553 and UART RS-422.
- 4. ESA missions request different types of GNSS I/F:
  - a. MilBus-1553: GOCE, Sentinel-1,-2,-3, EarthCare, Jason CS.
  - b. UART: Swarm, Proba-2,-3.
  - c. Spacewire: MetOp-SG

ADCSS 2014 | Slide 9

### **GNSS Receivers New Generation**





# I/Fs

- GAMIR development is internally prepared for any type of I/F
- However, the external box
   I/F depends on the
   mission specification:
  - a. GAMIR (Airbus)
     EM/EQM supports all of them, qual. MilBus-1553 (most common in ESA)
  - b. GAMIR (RAUG)
    EM/EQM supports
    MilBus-1553, EQM
    Proba-3 UART

ADCSS 2014 | Slide 10

European Space Agency





- 1. On board GNSS Receivers is a key technology for many different type of space applications and missions
- 2. New GNSS systems are being developed, and new signals transmitted
- 3. Different ESA missions requests different types of GNSS I/F: MilBus-1553, UART, Spacewire
- 4. I/F harmonization is always an important issue
- GAMIR Receivers being developed by ESA are ready to support any I/F