
83
23

09
10

-D
O

C
-T

AS
-E

N
-0

03

ADCSS 2014
ESA-ESTEC, Noordwijk, NL
27/10/2014

The OSRA
Component Model /
Meta-model reference
implementation
Presented by:

Marco Panunzio
marco.panunzio@thalesaleniaspace.com

 2014, Thales Alenia Space

MDE and CBSE: Abstraction

27/10/2014

2
class Producer : public IProducer {
 private:
 IConsumer* c;
 public:
 void produce() {…};
 void setC(IConsumer* _c) {…};
}

class Consumer : public IConsumer {
 void consume(Item i) {…};
}

class Assembly {
 private:
 IProducer* p;
 IConsumer* c1;
 IConsumer* c2;
 public:
 Assembly() {
 p = new Producer();
 Consumer* cs = new Consumer [2];
 c1 = new Consumer(); cs[0] = c1;
 c2 = new Consumer(); cs[1] = c2;
 p.setC(cs);
 }
}

Can you spot the software design?

c1:
Consumer

c2:
Consumer

p:
Producer

Assembly IConsumer

IConsumer

IProducer

 2014, Thales Alenia Space

MDE and CBSE: Abstraction and code generation

27/10/2014

3

HDSW TC
receiver
driver

TC central
manager

GNC TC
manager

GNC mode
manager

ReceiveTC
ReceiveTC

SetMode

TC interrupt
handler

Component
GNC

<<interface>>
GNC_MODE_MGR_IF

SetMode(in GNC_MODE_T)
Execute_Transition_To_NOM

Use Model-Driven Engineering and Component-oriented development
to specify the pattern with simple design constructs.

The code implementation is automatically generated with known code patterns.

Example: pattern for TC reception and dispatching

Code
Implementation

Increase abstraction level

IsCommandable
Ground / Board Interface

Model (e.g., SDB)

PUS TC(130, 1) V
X

 2014, Thales Alenia Space

Separation of concerns

It is about
Understanding the different concerns of the development
process

Functional, behavior, timing, tasking, etc…
Clearly identifying the actors of the development process

Software architect, component developer, etc…
Assigning concerns to development actors

Establishing clear responsibilities
• Responsibility on one concern shall not be overlapping

• Yet several users can use and refer to the concern specification

Ensuring that the actor has all the relevant information for the
specification of the aspects of the concern

Understanding when to address those concerns

27/10/2014

4

 2014, Thales Alenia Space

28/10/2014

5

Separation of concerns

It is enacted
At software modeling level

By using separate “design views” (a partial representation of the
system focused on a single concern)
• Enforces non-overlapping responsibility on design entities

At software implementation level

By using dedicated software entities so as to decouple and address
separately relevant concerns
• E.g., functional concerns separated from interaction and

communication concerns; functional concerns separated from
tasking concerns

“Structural view” “Electrical wiring view” “Plumbing view”

 2014, Thales Alenia Space

Component type

27/10/2014

6

AOCS_MODE_IF

<<component type>>
AOCS_C

MAG_FAILURE_EM SEPARATION_SIGNAL_ER

MAG_DATA_IF

THR_CMD_IF

Provided services are offered by
the component by exposing externally
defined interfaces

<<interface>>
AOCS_MODE_IF

previousMode : AOCS_MODE DAT
currMode : AOCS_MODE DAT
SetMode(m: in AOCS_MODE)

EnableTransToNOM()

Emitted and Received Events
Events are asynchronous notifications to communicate that
something notable has happened (e.g., state change, failures, etc…)

Data ports are used for exchange
of typed messages between

components

MAG_FAILURE
<<event>>

lastAcq : Mag_Field_T

A component type can be considered as a specification defining the
boundaries of the component, the services it will offer to external clients and
the services it needs from other components in order to operate correctly.

Required services are necessary for
the component to operate correctly
and are again specified in terms of
required interfaces

EQ_ACQ_DATA_SET_T
<<DataSetSpecification>>

AcqLine1 : EQ_ACQ_T
AcqLine2 : EQ_ACQ_T

 2014, Thales Alenia Space

Component implementation

27/10/2014

7

<<implementation>>
MY_COMP_IMPL

MY_IF

Implementation
language: C

A component implementation is a concrete
implementation of a component type.

It is the subcontracting unit of the approach.
Its realization can be delegated to an external
stakeholder.

It may be subject to detailed design (internal
decomposition, additional internal operations…)

ATTR_IF

ANOTHER_IF

/* Operations from component type definition */
getAttr1(MY_TYPE1 *return) { … };
getAttr2(MY_TYPE2 *return) {… };
setAttr2(MY_TYPE2 param) {…};
Op1(MY_TYPE3 p) {…};
Op2() {…};
Op3(MY_TYPE4* p) {…};

/* Additional operations (defined by the developer) */
My_OPa() { .. };
My_OPb() { .. };

The component developer develops the source code (pure
sequential code) of the services of the component
developed in the programming or modeling language of
choice (C, Ada, Simulink, etc…).

“Resource and implementation requirements” (e.g.,
max WCET, max EEPROM / RAM size) can be
stipulated on the implementation prior to delegating
its realization.
The component developer shall develop it honoring
the stipulated budgets.

Implicit attribute
operations

 2014, Thales Alenia Space

<<Sporadic operation>>
MIAT = 250 ms

Deadline = 250 ms

Instantiation, deployment and non-functional properties

Non-functional properties are only declaratively specified
Their implementation is assured by suitable containers

Dependent on the chosen execution platform and computational
model

The set of non-functional properties is fixed and decided by the
OSRA methodology

27/10/2014

8

Thermal
Management:

C

AOCS:
Simulink

Mission
Management

: Ada

1. Define (or reuse) a set
of components and

instantiate them

2. Assemble
components to satisfy
their functional needs

<<1553B>>

3. Define the hardware
topology

No hardware modeling. Interest
in communication,

schedulability analysis, code
generation only.

<<Sporadic operation>>
MIAT= 250 ms

Deadline = 200 ms

<<Cyclic operation>>
Period = 125 ms

Deadline = 125 ms

<<Protected operation>>

4. Annotate components with
non-functional requirements

5. Specify deployment directives

RT

RT

RT

RT

RT

BC

Star Tracker Magnetometer

AOCS
computer

Thruster Reaction Wheel

CDMU

 2014, Thales Alenia Space

Access to devices and execution platform services

27/10/2014

9

STR

RW

OBT

AOCS

Take advantage of the high-abstraction level of the design to declare in the same way access to software
components, avionics equipment and services of the execution platform.

1. Declare that the AOCS component requires data from the Star Trackers and sends commands to
the Reaction Wheels

2. Deploy the equipment “pseudo-component” on its hardware counterpart
3. Generate the communication code to the equipment

• Leveraging also on the communication support services (e.g., SOIS) of the execution platform

Avionics equipment

Execution platform service
1. Declare the access to the OBT provided by the execution platform

• Using a “pseudo-component” even if the execution platform is not developed with components

<<1553B>>

RT

RT

RT

RT

RT

BC

Star Tracker Magnetometer

AOCS
computer

Thruster Reaction Wheel

CDMU

 2014, Thales Alenia Space

Commandability and observability

Declare which operations, interface attributes and events are
commandable / observable on the ground / board interface
They can be referenced by an “external model” (e.g., an SDB)
in order to provide all complementary information required for
their exploitation (e.g., ParamIDs, mapping to PUS TC and
PUS params, etc…)

27/10/2014

10

AOCS_MODE_IF

<<component
instance>>

AOCS_C

MAG_FAILURE_EM

<<interface>>
AOCS_MODE_IF

previousMode : AOCS_MODE DAT
currMode : AOCS_MODE DAT

SetMode(m: in AOCS_MODE)
EnableTransToNOM()

IsCommandable

Ground / Board Interface Model
(e.g., SDB)

PUS TC(130, 1) V

X

IsObservable

V
X

ParamID 27987654

IsObservable
V

PUS TM(5, 3)
RID 3555642

 2014, Thales Alenia Space

Error containment regions and partitions

27/10/2014

11

<<instance>>
Another_2_C_inst

<<instance>>
A_Component_inst

<<instance>>
Another_C_inst

Error Containment Region 1 Error Containment Region 2

Partition 1 Partition 2

RT

RT RT

BC Magnetometer

Thruster Reaction Wheel

Core 1 Core 2

SMU

<<partition proxy>>
MY_REUSED_PARTITION

REUSED_PARTITION

 2014, Thales Alenia Space

OSRA core model and external models

OSRA core model (i.e., included in the component model)
Functional description of services
Component instantiation, deployment and declarative
specification of NFPs
Functional relationships with devices, execution platform
services, Monitor & Control services

OSRA “external models”
HK plan, protocol-dependent information (PUS-A, PUS-C, MOS)
Operation allocation to tasks and semaphores
Execution platform configuration
TSP partition configuration

27/10/2014

12

 2014, Thales Alenia Space

The component model language is organized as a set of “language units”
comprising a cohesive set of language concepts

OSRA metamodel specification: language architecture

27/10/2014

13

CommonKernel Data Types

SCM Kernel

Component

Deployment Monitor & Control

Hardware and
execution platform

Non-functional
properties Call Scenario

OSRA component model

 2014, Thales Alenia Space

OSRA metamodel reference implementation

Implemented as a domain-specific metamodel (DSM) called SCM
(“Space Component Model”)

All entities of the component mode are first-class native entities of the
language

Clear and direct mapping of concepts from spec to metamodel
Avoid offering concepts too generic or open to interpretation

Foster unambiguous understanding of concepts and convergence by
the community towards the same “reference concepts”

Offer as much as possible a design space with admissible choices only
Less “a-posteriori” checks on the model are necessary to ensure
consistency of design
Less backtrack of design due to incorrect choices

In principle only a possible implementation of the component model
Other implementations can be possible, as long as syntax and
semantics relationship between the component model and the
implementation language is ensured

27/10/2014

14

 2014, Thales Alenia Space

27/10/2014

15

End of presentation

Questions?

 2014, Thales Alenia Space

Overview of the OSRA component model

How do we define components?
We define three different entities: component types, component
implementation and component instances

In accord with the separation of concerns principle, each one of
them represent different concerns and has a specific role in the
software development process

27/10/2014

16

<<type>>
MY_COMP

[Required Interface]
ATTR_IF

[Provided Interface]
MY_IF

[Required Interface]
ANOTHER_IF

<<instance>>
MY_COMP_IMPL_INST

<<implementation>>
MY_COMP_IMPL

A component type can be considered as a specification defining the
boundaries of the component, the services it will offer to external clients and the
services it needs from other components in order to operate correctly.

A component implementation is one concrete implementation of a component
type. The component implementation entity created in the OBSW model has the
same external interfaces of its component type.
It can be subject to detailed design (to add internal decomposition and
additional operations).
The component developer will code the implementation code for the
component implementation

A component instance is an instantiation of a component implementation.
Component instances are important for: (i) binding components to fulfill their
functional needs; (ii) deploying components on processing units; (iii) specify
the desired concurrency, real-time and M&C requirements.

MY_IF

MY_IF

ATTR_IF

ANOTHER_IF

ATTR_IF

ANOTHER_IF

 2014, Thales Alenia Space

OSRA metamodel reference implementation

27/10/2014

17 CommonKernel
Metaclasses for basic needs:
- Unique identifiers
- Named elements
- Elements with comments and
- Annotations

Reusable for various modeling
studies, independently of the
OSRA

CommonTypes
Definition of data types and

constants.
Expressive power comparable to
strongly typed languages (e.g.,

Ada)

Reusable for various SW- or
OSRA-related studies (e.g., SOIS

EDS?)

SCM
Complete metamodel for the
definition of an OSRA “core

model”

CommonKernel Data Types

SCM Kernel

Component

Deployment Monitor & Control

Hardware and
execution platform

Non-functional
properties Call Scenario

SCM
metamodel

CommonKernel
metamodel

CommonTypes
metamodel

	The OSRA �Component Model / Meta-model reference implementation
	MDE and CBSE: Abstraction
	MDE and CBSE: Abstraction and code generation
	Separation of concerns
	Separation of concerns
	Component type
	Component implementation
	Instantiation, deployment and non-functional properties
	Access to devices and execution platform services
	Commandability and observability
	Error containment regions and partitions
	OSRA core model and external models
	OSRA metamodel specification: language architecture
	OSRA metamodel reference implementation
	Slide Number 15
	Overview of the OSRA component model
	OSRA metamodel reference implementation

