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Overview

● Aim and Role of the specification
● Document overview
● Architecture Overview
● Component Layer specification

● Example: M&C in the OSRA

● Interaction Layer Specification
● Execution Platform Specification
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OSRA Specification

● A normative specification of the Onboard Software Reference Architecture
● Is also required to

● Introduce and explain architectural principles

● Rationalise architectural design choices

● Acts as an answer to original SAVOIR-FAIRE User Needs

● Too much for one document
● Focus would be lost

● Split into two:
● Specification and Rationale

● The specification relates closely to other documents
● Rationale

● Meta-model specification (and meta-model)

● Training material
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Specification – Core Documents

● OSRA Specification (D02-SPEC)
● Introduction

● Key concepts

● Informative guide to SCM

● Normative specification of interfaces

● SCM Specification (D03)
● Normative specification of meta-model

● Specification of model exchange format

● Meta-Model (M01)
● Normative meta-model 
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Supporting Material

● OSRA Rationale (D02-RAT)
● Background on development of OSRA

● History of OSRA development

● Rationale of design decisions – focus on COrDeT-3

● Example tooling
● User Manual for Example Tooling (D04)

● OSRA Training Material
● Not covered in COrDeT-3
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Specification Role

● High-level normative specification
● Try to specify (normatively) the minimum required

● Primarily specifies interfaces
● Informative material to outline design

● Expectations

● Intentions

● Informative material intended to be sufficient to
● Introduce the OSRA

● Provide a context for the specification

● Act as a starting point for the normative document set

● The OSRA specification is not
● A design document

● A justification for the specification

● An explanatory guide to the OSRA
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Document Structure (1)

● Split into four main chapters
● Based on architectural layers

● Chapter 2 is intended to be an overview
● Provide an introduction for a reader not familiar with concepts

● Deliberately light on detail for accessibility and brevity

● Intended to provide enough information to show the design path
● From original user need to final architecture

● Description of SCM
● Very high level concepts introduced to support argument

● More detailed description of SCM in next chapter

● Process description included
● Overview of process as a direct answer to user needs
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Document Structure (2)

● Focus of Chapter 3 is the Component Layer 
● SCM is the most important part of this

● Introduce the models and their relationships
● Core and extended models

● Detail all key concepts of the Core Model
● Acts as an introduction and an overview for Meta-Model (SCM) Specification

● Refer to SCM Specification and meta-model for normative specification

● Specify all pseudo-components
● In terms similar to the training material (for consistency)

● Discussed in the context of functional patterns (e.g. reporting, commanding 
etc.)

● Illustrated with short examples

● Pseudo-component interface specification [Normative]



27/10/2014 ADCSS 2014: OSRA Specification 9/39

Document Structure (3)

● Focus of Chapter 4 is the Interaction Layer from the perspective of 
components

● Division of responsibilities
● e.g. Where is data stored? Who is responsible for synchronisation? How does 

initialisation work?

● Semantics described in text, unless specification is needed as e.g. state 
diagrams

● Some focus on tasking and concurrency
● Specification of component-container interface [Normative]

● As abstract service primitives
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Document Structure (4)

● Focus of Chapter 5 is the Execution Platform
● Covers Execution Platform services to the Interaction Layer
● Specified as abstract service primitives [Normative]
● Includes relationship with and use of SOIS services

● This is also [Normative]
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OSRA Architectural Layers

Execution Platform layer

Interaction Layer

Component Layer

Avionics 
services

Monitoring and 
Control services

Domain neutral 
services

Future services
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OSRA Layers and Variability
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Working with Components

Thermal 
Management: 

C

Thermal 
Management: 

C

AOCS: 
Simulink

AOCS: 
Simulink

Mission 
Management 

: Ada

Mission 
Management 

: Ada

1. Define or reuse a set 
of components

2. Assemble the 
components to satisfy their 

functional needs

<<1553B>> 

3. Define the hardware topology
No hardware modeling. 

Interest in communication,  
schedulability analysis, code 

generation only.

<<Sporadic operation>>
Period = 250 ms

Deadline = 200 ms

<<Cyclic operation>>
Period = 125 ms

Deadline = 125 ms

<<Protected operation>>

4. Annotate components with 
non-functional requirements

5. Specify deployment directives

<<Sporadic operation>>
Period = 250 ms

Deadline = 250 ms

6. Automatically analyse the software model to ascertain that the whole set of non-functional properties can be fulfilled6. Automatically analyse the software model to ascertain that the whole set of non-functional properties can be fulfilled

RT

RT

RT

RT

RT

BC

Star TrackerStar Tracker MagnetometerMagnetometer

AOCS 
computer
AOCS 

computer

ThrusterThrusterReaction WheelReaction Wheel

CDMUCDMU
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Component Concepts

● Interfaces
● Provided/required

● Have attributes and operations

● Interface attributes
● Read-only (DAT)

● Read-write (CFG)

● Interface operations
● Input, output and input/output parameters

● Can throw exceptions

● Events
● Emitters/receivers

● Data
● Emitters/receivers
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Building Software

● Component instances are assembled
● Create functional software
● Three areas remain:

● How to do I/O (e.g. onboard)?

● How do access platform services (e.g. time)?

● How to do M&C

● All three involve interaction with the Execution Platform
● How is this visible at the Component Layer?

● Use pseudo-components
● Execution Platform services exposed with component interfaces

● Appear as components
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Device Pseudo-Components

● All onboard I/O carried out using device pseudo-components
● The provided interface(s) of the pseudo-component match the expected 

interface of the device
● Expected to be at a functional level

● Permits the later deployment of the pseudo-component onto a choice of devices

● Separation of concerns

● Strong links with SOIS Electronic Data Sheets
● EDS specifies a provided interface which can be transformed into an SCM 

provided interface
● At DVS level (more later)

● Can also make use of data emission

● Asynchronous emission of data e.g. telemetry

● At a functional (not packet) level
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Pseudo-Component Use

<<instance>>
AOCS_C_inst

<<instance>>
AOCS_C_inst

AOCS_MODE_IF

<<instance>>
Mode_Manager_C_inst

<<instance>>
Mode_Manager_C_inst

AOCS_MODE_IF
MAG_DATA_IF

THR_CMD_IF

<<instance>>
MAG_C

<<instance>>
MAG_C

<<instance>>
THR_C

<<instance>>
THR_CTHR_CMD_IF

OBT_IF

MAG_DATA_IF

<<instance>>
OBT_C

<<instance>>
OBT_C OBT_T
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Monitoring and Control

● From a component perspective M&C involves
● The commanding of component operations

● The observation (and reporting) of component attributes, events and data

● The monitoring of component attributes

● Possible to determine which attributes and operations apply to M&C
● Attributes may be marked as observable

● Can then be seen by the Execution Platform for M&C purposes

● Includes both reporting and monitoring

● Event emitters and data emitters may also be marked as observable
● Attributes may be marked as modifiable

● Permits their value to be modified by M&C

● Only if the attribute is read-write (obviously)

● Operations may be marked as commandable
● All applied to component instances
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Control over M&C

● High-level mission-specific functions are expected to be implemented at 
the Component Layer

● Do not need to “understand” M&C
● Do need to control M&C

● M&C Services
● Reporting

– Enable/disable reporting of housekeeping, events etc. depending 
on spacecraft mode

● Monitoring

– Enable/disable monitoring of particular attributes
● Commanding

● Automation

● Forwarding

● OBCPs
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Interaction Patterns

● Operations may also be be marked as providing acknowledgements
● Must be marked as part of interface definition

● Affects component implementation

● Acknowledgement types
● None (normal operation invocation)

● Single (acknowledgement on “acceptance”)

● Progress (progress updates)

● Can be used throughout the software system
● Especially applicable to M&C

● Used to address PUS Service 1
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Platform Pseudo-Components

● Time access
● In the form of “clocks”

● Can be multiple e.g. OBET/SCET vs GPS

● Control of platform
● Restarts

● Reporting of errors from/to platform

● Partition control (for TSP)
● Schedule control (for TSP)
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Dynamic Architecture

● Specifics of dynamic architecture not present in core model
● e.g. assignment and control of RTOS tasks

● Semantics specified at component level
● Sporadic (asynchronous) operation invocation

● Periodic operation invocation

● Execution order constraints on periodic invocations

● Data protection

● This specifies only the non-functional requirements
● Not the design or implementation

● e.g. relationship between a periodically executed operation and the actual RTOS task 
is not defined by the core model

● Can also specify constraints on component initialisation order
● Not necessary to specify complete initialisation order
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Interaction Layer Specification

● The Interaction Layer is responsible for “glueing” the component 
implementation instances to the Execution Platform

● Must realise Non-Functional Properties using Execution Platform services
● Expected to be tool-generated

● But does not have to be

● Implementation is open
● For interoperability specify component/container interface

ConnectorConnector

Component BComponent BComponent AComponent A

Realised as

Component
A

Component
A

Component
B

Component
B
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Component/Container Interface

● Life-cycle
● Two-stage initialisation

● Context management

● Provided and required interfaces
● Attribute accessors

● Operations

● Event emitters and receivers
● Data emitters and receivers
● No further interfaces to Execution Platform

● No “internal API”

● Component responsible for holding attribute data
● Complete encapsulation

● So that implementation is flexible
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Interface Specification

● Interaction Layer interface specified as OSI service primitives
● Container as the service provider

● Component as the service user

● Permits the definition of semantics in a language independent way
● Needs to be bound to a specific language and invocation pattern for a 

concrete implementation
● Choice of bindings impact computational model

● And vice versa
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Execution Platform

● Execution Platform interface also defines as service primitives
● Execution Platform as the service provider

● Covers all services necessary for containers and for pseudo-components
● Services

● Reporting

● Monitoring

● Commanding

● Automation

● Forwarding

● OBCPs

● Platform management

● Partition management

● Device and Time Access

● Life-cycle management

● Context management

● Tasking and concurrency
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Document Status

● OSRA Specification
● Well developed draft

● Some known issues (e.g. too much detail on process in chapter 2)

● Currently out for SAVOIR-FAIRE/-IMA WG review

● Work continuing

● OSRA Rationale
● Early draft

● Composed of material from COrDeT-3 consortium members

● Needs editing and more work

● Work continuing
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Backup Slides
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Core and Extended Models

● Architecture reflects separation of concerns
● Component Layer is independent of computational model

● Therefore SCM must also be independent of computational model

● Component Layer is independent of M&C technology
● SCM must also be independent

● But this information is necessary for complete toolchain
● Solution is to split models into core and external

● OSRA Specification covers core model only
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Interaction Patterns (2)
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M&C Example: Reporting

● Attribute reporting corresponds to telemetry reporting
● e.g. housekeeping

● e.g. PUS Service 3

● Execution Platform responsible for querying observable attributes and reporting 
them

● How to report them (e.g. structure definitions, telemetry packet definitions) 
internal to Execution Platform

● Typically configurable

● A reporting group can be mapped to several things
● Choice of Execution Platform

● Not specified

● For example, a group could be mapped onto
● A structure

● A telemetry report packet type

● An aggregation

● This permits components to enable/disable housekeeping packets
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OBCPs

● Only some OBCPs are visible to component layer
● Usually OBAPs

● Should exist for life of software

● Should have consistent interface for life of software

● Largely indistinguishable from other components
● Interface to OBCP operations and attributes (parameters) using component 

interface

● Difference for OBCPs is that their execution may be controlled
● Stop, abort etc.

● Additional provided interface
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OBCP Component Interfaces
<<interface>>

OBAP_OPS_IF

operationState : MY_STATE_T ro

operatioInput : MY_INPUT_T rw

MyOp1 ()

MyOp2 (initState : in MY_STATE_T)

<<instance>>
OBAP_Cmp_Inst
<<instance>>

OBAP_Cmp_Inst

<<platform_interface>>
OBCP_IF

enable ()

disable ()

stop ()

abort ()
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Language Bindings

● Service primitives defined in pairs
● Request/confirmation

– Initiated by service user

● Indication/response

– Initiated by service provider

● Can be bound to any(?) language
● Can be bound to a variety of patterns

● Synchronous and asynchronous

● For example
● Synchronous implementation of request/confirmation can become a function 

call
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Example

Producer: 
C, Ada

Producer: 
C, Ada

Execution platformExecution platform

Consumer: 
C, Ada

Consumer: 
C, Ada

Consume(IN Integer_T c;)

<<interface>>
Consumer_IF

Produce()

<<interface>>
Producer_IF

<<instance>>
Consumer_inst

<<instance>>
Consumer_inst

<<instance>>
Producer_inst

<<instance>>
Producer_inst

status: Boolean_T;
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Primitive Bindings: Producer

● Provided interface

PI_<Provided Interface Port Name>_invoke<Operation Name>.indication

PI_<Provided Interface Port Name>_invoke<Operation Name>.response

● Can be bound to a single, synchronous callback function (e.g. in C)

status_t Producer_PI_Producer_IF_invokeProduce(
   Producer_Inst_t *instance);

● Note that the primitives assume some kind of namespacing for component
● Obviously not the case in C, so component type name included

● Required interface

RI_<Required Interface Port Name>_invoke<Operation Name>.request

RI_<Required Interface Port Name>_invoke<Operation Name>.confirmation

● Again, bound to a single, synchronous function (not callback)

status_t Producer_RI_Consumer_IF_invokeConsume(
   Producer_Inst_t *instance, Integer_t c);
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Primitive Bindings: Producer

● Required interface
● Get accessors

RI_<Required Interface Port Name>_get<Attribute Name>.request

RI_<Required Interface Port Name>_get<Attribute Name>.confirmation

● Set accessors

RI_<Required Interface Port Name>_set<Attribute Name>.request

● RI_<Required Interface Port Name>_set<Attribute Name>.confirmation

● Again, bound to single, synchronous functions

status_t Producer_RI_Consumer_IF_getStatus(
   Producer_Inst_t *instance, Boolean_t *status);   

status_t Producer_RI_Consumer_IF_setStatus(
   Producer_Inst_t *instance, Boolean_t status);
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Primitive Bindings: Producer

● Asynchronous bindings also possible
● One possible implementation is callbacks

● Other possible e.g. tickets

● For example, consider Consume as asynchronous with progress reporting
● Covered by existing service primitives

RI_<Required Interface Port Name>_invoke<Operation Name>.request

RI_<Required Interface Port Name>_invoke<Operation Name>.confirmation

● Function to be called

status_t Producer_RI_Consumer_IF_invokeConsume(
   Producer_Inst_t *instance, Integer_t c);

● Callbacks

status_t Producer_RI_Consumer_IF_invokeConsumeStarted(
   Producer_Inst_t *instance, status_t status);

status_t Producer_RI_Consumer_IF_invokeConsumeProgress(
   Producer_Inst_t *instance, status_t status, Progress_t progress);   

status_t Producer_RI_Consumer_IF_invokeConsumeComplete(
   Producer_Inst_t *instance, status_t status);
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External Systems

● Interactions with external systems also carried out using Execution 
Platform services

● External systems could be
● Other partitions

● Other OBCs (e.g. payload computer)

● Other spacecraft

● Possibly ground

● Defined at a high level
● Messaging services not provided
● Capability to

● Get/set a remote attribute

● Invoke a remote operation

● Receive a remote event

● Etc.
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