
OSRA Specification and
Rationale

Peter Mendham and the COrDeT-3 Consortium
ADCSS - 27th October 2014

27/10/2014 ADCSS 2014: OSRA Specification 2/39

Overview

● Aim and Role of the specification
● Document overview
● Architecture Overview
● Component Layer specification

● Example: M&C in the OSRA

● Interaction Layer Specification
● Execution Platform Specification

27/10/2014 ADCSS 2014: OSRA Specification 3/39

OSRA Specification

● A normative specification of the Onboard Software Reference Architecture
● Is also required to

● Introduce and explain architectural principles

● Rationalise architectural design choices

● Acts as an answer to original SAVOIR-FAIRE User Needs

● Too much for one document
● Focus would be lost

● Split into two:
● Specification and Rationale

● The specification relates closely to other documents
● Rationale

● Meta-model specification (and meta-model)

● Training material

27/10/2014 ADCSS 2014: OSRA Specification 4/39

Specification – Core Documents

● OSRA Specification (D02-SPEC)
● Introduction

● Key concepts

● Informative guide to SCM

● Normative specification of interfaces

● SCM Specification (D03)
● Normative specification of meta-model

● Specification of model exchange format

● Meta-Model (M01)
● Normative meta-model

27/10/2014 ADCSS 2014: OSRA Specification 5/39

Supporting Material

● OSRA Rationale (D02-RAT)
● Background on development of OSRA

● History of OSRA development

● Rationale of design decisions – focus on COrDeT-3

● Example tooling
● User Manual for Example Tooling (D04)

● OSRA Training Material
● Not covered in COrDeT-3

27/10/2014 ADCSS 2014: OSRA Specification 6/39

Specification Role

● High-level normative specification
● Try to specify (normatively) the minimum required

● Primarily specifies interfaces
● Informative material to outline design

● Expectations

● Intentions

● Informative material intended to be sufficient to
● Introduce the OSRA

● Provide a context for the specification

● Act as a starting point for the normative document set

● The OSRA specification is not
● A design document

● A justification for the specification

● An explanatory guide to the OSRA

27/10/2014 ADCSS 2014: OSRA Specification 7/39

Document Structure (1)

● Split into four main chapters
● Based on architectural layers

● Chapter 2 is intended to be an overview
● Provide an introduction for a reader not familiar with concepts

● Deliberately light on detail for accessibility and brevity

● Intended to provide enough information to show the design path
● From original user need to final architecture

● Description of SCM
● Very high level concepts introduced to support argument

● More detailed description of SCM in next chapter

● Process description included
● Overview of process as a direct answer to user needs

27/10/2014 ADCSS 2014: OSRA Specification 8/39

Document Structure (2)

● Focus of Chapter 3 is the Component Layer
● SCM is the most important part of this

● Introduce the models and their relationships
● Core and extended models

● Detail all key concepts of the Core Model
● Acts as an introduction and an overview for Meta-Model (SCM) Specification

● Refer to SCM Specification and meta-model for normative specification

● Specify all pseudo-components
● In terms similar to the training material (for consistency)

● Discussed in the context of functional patterns (e.g. reporting, commanding
etc.)

● Illustrated with short examples

● Pseudo-component interface specification [Normative]

27/10/2014 ADCSS 2014: OSRA Specification 9/39

Document Structure (3)

● Focus of Chapter 4 is the Interaction Layer from the perspective of
components

● Division of responsibilities
● e.g. Where is data stored? Who is responsible for synchronisation? How does

initialisation work?

● Semantics described in text, unless specification is needed as e.g. state
diagrams

● Some focus on tasking and concurrency
● Specification of component-container interface [Normative]

● As abstract service primitives

27/10/2014 ADCSS 2014: OSRA Specification 10/39

Document Structure (4)

● Focus of Chapter 5 is the Execution Platform
● Covers Execution Platform services to the Interaction Layer
● Specified as abstract service primitives [Normative]
● Includes relationship with and use of SOIS services

● This is also [Normative]

27/10/2014 ADCSS 2014: OSRA Specification 11/39

OSRA Architectural Layers

Execution Platform layer

Interaction Layer

Component Layer

Avionics
services

Monitoring and
Control services

Domain neutral
services

Future services

27/10/2014 ADCSS 2014: OSRA Specification 12/39

OSRA Layers and Variability

27/10/2014 ADCSS 2014: OSRA Specification 13/39

Working with Components

Thermal
Management:

C

Thermal
Management:

C

AOCS:
Simulink

AOCS:
Simulink

Mission
Management

: Ada

Mission
Management

: Ada

1. Define or reuse a set
of components

2. Assemble the
components to satisfy their

functional needs

<<1553B>>

3. Define the hardware topology
No hardware modeling.

Interest in communication,
schedulability analysis, code

generation only.

<<Sporadic operation>>
Period = 250 ms

Deadline = 200 ms

<<Cyclic operation>>
Period = 125 ms

Deadline = 125 ms

<<Protected operation>>

4. Annotate components with
non-functional requirements

5. Specify deployment directives

<<Sporadic operation>>
Period = 250 ms

Deadline = 250 ms

6. Automatically analyse the software model to ascertain that the whole set of non-functional properties can be fulfilled6. Automatically analyse the software model to ascertain that the whole set of non-functional properties can be fulfilled

RT

RT

RT

RT

RT

BC

Star TrackerStar Tracker MagnetometerMagnetometer

AOCS
computer
AOCS

computer

ThrusterThrusterReaction WheelReaction Wheel

CDMUCDMU

27/10/2014 ADCSS 2014: OSRA Specification 14/39

Component Concepts

● Interfaces
● Provided/required

● Have attributes and operations

● Interface attributes
● Read-only (DAT)

● Read-write (CFG)

● Interface operations
● Input, output and input/output parameters

● Can throw exceptions

● Events
● Emitters/receivers

● Data
● Emitters/receivers

27/10/2014 ADCSS 2014: OSRA Specification 15/39

Building Software

● Component instances are assembled
● Create functional software
● Three areas remain:

● How to do I/O (e.g. onboard)?

● How do access platform services (e.g. time)?

● How to do M&C

● All three involve interaction with the Execution Platform
● How is this visible at the Component Layer?

● Use pseudo-components
● Execution Platform services exposed with component interfaces

● Appear as components

27/10/2014 ADCSS 2014: OSRA Specification 16/39

Device Pseudo-Components

● All onboard I/O carried out using device pseudo-components
● The provided interface(s) of the pseudo-component match the expected

interface of the device
● Expected to be at a functional level

● Permits the later deployment of the pseudo-component onto a choice of devices

● Separation of concerns

● Strong links with SOIS Electronic Data Sheets
● EDS specifies a provided interface which can be transformed into an SCM

provided interface
● At DVS level (more later)

● Can also make use of data emission

● Asynchronous emission of data e.g. telemetry

● At a functional (not packet) level

27/10/2014 ADCSS 2014: OSRA Specification 17/39

Pseudo-Component Use

<<instance>>
AOCS_C_inst

<<instance>>
AOCS_C_inst

AOCS_MODE_IF

<<instance>>
Mode_Manager_C_inst

<<instance>>
Mode_Manager_C_inst

AOCS_MODE_IF
MAG_DATA_IF

THR_CMD_IF

<<instance>>
MAG_C

<<instance>>
MAG_C

<<instance>>
THR_C

<<instance>>
THR_CTHR_CMD_IF

OBT_IF

MAG_DATA_IF

<<instance>>
OBT_C

<<instance>>
OBT_C OBT_T

27/10/2014 ADCSS 2014: OSRA Specification 18/39

Monitoring and Control

● From a component perspective M&C involves
● The commanding of component operations

● The observation (and reporting) of component attributes, events and data

● The monitoring of component attributes

● Possible to determine which attributes and operations apply to M&C
● Attributes may be marked as observable

● Can then be seen by the Execution Platform for M&C purposes

● Includes both reporting and monitoring

● Event emitters and data emitters may also be marked as observable
● Attributes may be marked as modifiable

● Permits their value to be modified by M&C

● Only if the attribute is read-write (obviously)

● Operations may be marked as commandable
● All applied to component instances

27/10/2014 ADCSS 2014: OSRA Specification 19/39

Control over M&C

● High-level mission-specific functions are expected to be implemented at
the Component Layer

● Do not need to “understand” M&C
● Do need to control M&C

● M&C Services
● Reporting

– Enable/disable reporting of housekeeping, events etc. depending
on spacecraft mode

● Monitoring

– Enable/disable monitoring of particular attributes
● Commanding

● Automation

● Forwarding

● OBCPs

27/10/2014 ADCSS 2014: OSRA Specification 20/39

Interaction Patterns

● Operations may also be be marked as providing acknowledgements
● Must be marked as part of interface definition

● Affects component implementation

● Acknowledgement types
● None (normal operation invocation)

● Single (acknowledgement on “acceptance”)

● Progress (progress updates)

● Can be used throughout the software system
● Especially applicable to M&C

● Used to address PUS Service 1

27/10/2014 ADCSS 2014: OSRA Specification 21/39

Platform Pseudo-Components

● Time access
● In the form of “clocks”

● Can be multiple e.g. OBET/SCET vs GPS

● Control of platform
● Restarts

● Reporting of errors from/to platform

● Partition control (for TSP)
● Schedule control (for TSP)

27/10/2014 ADCSS 2014: OSRA Specification 22/39

Dynamic Architecture

● Specifics of dynamic architecture not present in core model
● e.g. assignment and control of RTOS tasks

● Semantics specified at component level
● Sporadic (asynchronous) operation invocation

● Periodic operation invocation

● Execution order constraints on periodic invocations

● Data protection

● This specifies only the non-functional requirements
● Not the design or implementation

● e.g. relationship between a periodically executed operation and the actual RTOS task
is not defined by the core model

● Can also specify constraints on component initialisation order
● Not necessary to specify complete initialisation order

27/10/2014 ADCSS 2014: OSRA Specification 23/39

Interaction Layer Specification

● The Interaction Layer is responsible for “glueing” the component
implementation instances to the Execution Platform

● Must realise Non-Functional Properties using Execution Platform services
● Expected to be tool-generated

● But does not have to be

● Implementation is open
● For interoperability specify component/container interface

ConnectorConnector

Component BComponent BComponent AComponent A

Realised as

Component
A

Component
A

Component
B

Component
B

27/10/2014 ADCSS 2014: OSRA Specification 24/39

Component/Container Interface

● Life-cycle
● Two-stage initialisation

● Context management

● Provided and required interfaces
● Attribute accessors

● Operations

● Event emitters and receivers
● Data emitters and receivers
● No further interfaces to Execution Platform

● No “internal API”

● Component responsible for holding attribute data
● Complete encapsulation

● So that implementation is flexible

27/10/2014 ADCSS 2014: OSRA Specification 25/39

Interface Specification

● Interaction Layer interface specified as OSI service primitives
● Container as the service provider

● Component as the service user

● Permits the definition of semantics in a language independent way
● Needs to be bound to a specific language and invocation pattern for a

concrete implementation
● Choice of bindings impact computational model

● And vice versa

27/10/2014 ADCSS 2014: OSRA Specification 26/39

Execution Platform

● Execution Platform interface also defines as service primitives
● Execution Platform as the service provider

● Covers all services necessary for containers and for pseudo-components
● Services

● Reporting

● Monitoring

● Commanding

● Automation

● Forwarding

● OBCPs

● Platform management

● Partition management

● Device and Time Access

● Life-cycle management

● Context management

● Tasking and concurrency

27/10/2014 ADCSS 2014: OSRA Specification 27/39

Document Status

● OSRA Specification
● Well developed draft

● Some known issues (e.g. too much detail on process in chapter 2)

● Currently out for SAVOIR-FAIRE/-IMA WG review

● Work continuing

● OSRA Rationale
● Early draft

● Composed of material from COrDeT-3 consortium members

● Needs editing and more work

● Work continuing

27/10/2014 ADCSS 2014: OSRA Specification 28/39

Backup Slides

27/10/2014 ADCSS 2014: OSRA Specification 29/39

Core and Extended Models

● Architecture reflects separation of concerns
● Component Layer is independent of computational model

● Therefore SCM must also be independent of computational model

● Component Layer is independent of M&C technology
● SCM must also be independent

● But this information is necessary for complete toolchain
● Solution is to split models into core and external

● OSRA Specification covers core model only

27/10/2014 ADCSS 2014: OSRA Specification 30/39

Interaction Patterns (2)

27/10/2014 ADCSS 2014: OSRA Specification 31/39

M&C Example: Reporting

● Attribute reporting corresponds to telemetry reporting
● e.g. housekeeping

● e.g. PUS Service 3

● Execution Platform responsible for querying observable attributes and reporting
them

● How to report them (e.g. structure definitions, telemetry packet definitions)
internal to Execution Platform

● Typically configurable

● A reporting group can be mapped to several things
● Choice of Execution Platform

● Not specified

● For example, a group could be mapped onto
● A structure

● A telemetry report packet type

● An aggregation

● This permits components to enable/disable housekeeping packets

27/10/2014 ADCSS 2014: OSRA Specification 32/39

OBCPs

● Only some OBCPs are visible to component layer
● Usually OBAPs

● Should exist for life of software

● Should have consistent interface for life of software

● Largely indistinguishable from other components
● Interface to OBCP operations and attributes (parameters) using component

interface

● Difference for OBCPs is that their execution may be controlled
● Stop, abort etc.

● Additional provided interface

27/10/2014 ADCSS 2014: OSRA Specification 33/39

OBCP Component Interfaces
<<interface>>

OBAP_OPS_IF

operationState : MY_STATE_T ro

operatioInput : MY_INPUT_T rw

MyOp1 ()

MyOp2 (initState : in MY_STATE_T)

<<instance>>
OBAP_Cmp_Inst
<<instance>>

OBAP_Cmp_Inst

<<platform_interface>>
OBCP_IF

enable ()

disable ()

stop ()

abort ()

27/10/2014 ADCSS 2014: OSRA Specification 34/39

Language Bindings

● Service primitives defined in pairs
● Request/confirmation

– Initiated by service user

● Indication/response

– Initiated by service provider

● Can be bound to any(?) language
● Can be bound to a variety of patterns

● Synchronous and asynchronous

● For example
● Synchronous implementation of request/confirmation can become a function

call

27/10/2014 ADCSS 2014: OSRA Specification 35/39

Example

Producer:
C, Ada

Producer:
C, Ada

Execution platformExecution platform

Consumer:
C, Ada

Consumer:
C, Ada

Consume(IN Integer_T c;)

<<interface>>
Consumer_IF

Produce()

<<interface>>
Producer_IF

<<instance>>
Consumer_inst

<<instance>>
Consumer_inst

<<instance>>
Producer_inst

<<instance>>
Producer_inst

status: Boolean_T;

27/10/2014 ADCSS 2014: OSRA Specification 36/39

Primitive Bindings: Producer

● Provided interface

PI_<Provided Interface Port Name>_invoke<Operation Name>.indication

PI_<Provided Interface Port Name>_invoke<Operation Name>.response

● Can be bound to a single, synchronous callback function (e.g. in C)

status_t Producer_PI_Producer_IF_invokeProduce(
 Producer_Inst_t *instance);

● Note that the primitives assume some kind of namespacing for component
● Obviously not the case in C, so component type name included

● Required interface

RI_<Required Interface Port Name>_invoke<Operation Name>.request

RI_<Required Interface Port Name>_invoke<Operation Name>.confirmation

● Again, bound to a single, synchronous function (not callback)

status_t Producer_RI_Consumer_IF_invokeConsume(
 Producer_Inst_t *instance, Integer_t c);

27/10/2014 ADCSS 2014: OSRA Specification 37/39

Primitive Bindings: Producer

● Required interface
● Get accessors

RI_<Required Interface Port Name>_get<Attribute Name>.request

RI_<Required Interface Port Name>_get<Attribute Name>.confirmation

● Set accessors

RI_<Required Interface Port Name>_set<Attribute Name>.request

● RI_<Required Interface Port Name>_set<Attribute Name>.confirmation

● Again, bound to single, synchronous functions

status_t Producer_RI_Consumer_IF_getStatus(
 Producer_Inst_t *instance, Boolean_t *status);

status_t Producer_RI_Consumer_IF_setStatus(
 Producer_Inst_t *instance, Boolean_t status);

27/10/2014 ADCSS 2014: OSRA Specification 38/39

Primitive Bindings: Producer

● Asynchronous bindings also possible
● One possible implementation is callbacks

● Other possible e.g. tickets

● For example, consider Consume as asynchronous with progress reporting
● Covered by existing service primitives

RI_<Required Interface Port Name>_invoke<Operation Name>.request

RI_<Required Interface Port Name>_invoke<Operation Name>.confirmation

● Function to be called

status_t Producer_RI_Consumer_IF_invokeConsume(
 Producer_Inst_t *instance, Integer_t c);

● Callbacks

status_t Producer_RI_Consumer_IF_invokeConsumeStarted(
 Producer_Inst_t *instance, status_t status);

status_t Producer_RI_Consumer_IF_invokeConsumeProgress(
 Producer_Inst_t *instance, status_t status, Progress_t progress);

status_t Producer_RI_Consumer_IF_invokeConsumeComplete(
 Producer_Inst_t *instance, status_t status);

27/10/2014 ADCSS 2014: OSRA Specification 39/39

External Systems

● Interactions with external systems also carried out using Execution
Platform services

● External systems could be
● Other partitions

● Other OBCs (e.g. payload computer)

● Other spacecraft

● Possibly ground

● Defined at a high level
● Messaging services not provided
● Capability to

● Get/set a remote attribute

● Invoke a remote operation

● Receive a remote event

● Etc.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

