
28/10/2014 ADCSS 2014 1

Model-driven & component-based engineering

Developping the OBSW of an autonomous satellite

Jérémie POULY (CNES)

 ADCSS 2014

SO
M

M
A

IR
E

2

 INTRODUCTION
 AGATA PROGRAM
 MDE & CBSE
 DEVELOPMENT PROCESS
 OBSW ARCHITECTURE
 CONCLUSION

28/10/2014 ADCSS 2014

CONTEXT

3

 System issues
 Increase level of on-board autonomy
 Increase hardware independency
 Increase software flexibility

 Increasing on-board processing power

 New methods are required for On-Board
SoftWare (OBSW) development

?

?
time

28/10/2014 ADCSS 2014

SO
M

M
A

IR
E

4

 INTRODUCTION
 AGATA PROGRAM
 MDE & CBSE
 DEVELOPMENT PROCESS
 OBSW ARCHITECTURE
 CONCLUSION

28/10/2014 ADCSS 2014

AGATA PROGRAM

5

 AGATA « Autonomy Generic Architecture – Tests and Applications »
 CNES-ONERA joint research program decided in 2004
 Develop a ground tool to demonstrate the feasibility and interest of

autonomy for space systems
 Define and test a process

for the development and
the validation of OBSW
dedicated to autonomy

 Develop a rapid prototyping
tool to evaluate autonomy
concepts for future projects

Multi-domain activity
» Several CNES departments

involved
» Onera, Thales Alenia Space,

Airbus DS, LAAS, Alten,
CSSI, Spacebel…

Mission center

Control center

SAT01 SAT02

Including :
- OBSW
- test bench
 (numerical)

Satellite
Database

Ground segment

28/10/2014 ADCSS 2014

AGATA GROUND DEMONSTRATOR

6

 A demonstrator for on-board autonomy
 Fully autonomous missions

 A demonstrator for new technologies
 UML specification of the OBSW (Eclipse/Topcased)
MDE (automatic code generation)
 RTSJ (“Real-Time Specification for Java”)
 PUS, OBCP

 Based on 3 independent components
 A generic satellite simulator (BASILES)

» Fully numerical or hybrid simulation (TSIM-HW “Leon2” CPU board)
 A ground segment (OCTAVE)

» PUS-compliant (CNES tailorisation of ECSS E70-41A)
 A specific OBSW, based on a generic component-oriented architecture

» PUS-compliant (CNES tailorisation of ECSS E70-41A)
» On-board mission planning algorithm

28/10/2014 ADCSS 2014

AGATA-ONE MISSION

7

 Reference scenario « AGATA-ONE »
 Earth monitoring mission (two LEO Agile satellites)
 Autonomously detect, record and download the data of sources of

electromagnetic emission (SEE) around the Earth
 Record and download ground requests
 Highly variable and unpredictable data rate

» between sources
» for a single source with respect to time

 Large amount of data collected
 But limited downlink capacity

 Requires on-board
reactive planning to
maximize data download

28/10/2014 ADCSS 2014

SO
M

M
A

IR
E

8

 INTRODUCTION
 AGATA PROGRAM
 MDE & CBSE
 DEVELOPMENT PROCESS
 OBSW ARCHITECTURE
 CONCLUSION

28/10/2014 ADCSS 2014

TOWARD A NEW PARADIGM

9

 Autonomous OBSW complexity
 Impossible to foresee all feasibility dead ends
 Necessity to prototype complex functions and interactions

 Validation issues (usual validation methods inappropriated)
 Decision tree far too complex
 System reaction not necessarily predictable
 Exhaustive testing is impossible

 Hardware abstraction

 How to design the autonomous AGATA OBSW ?

 Define a generic modular architecture
 Building-blocks approach: “divide and conquer” paradigm

 Follow an iterative and incremental development process
 Validation process nested in development process

28/10/2014 ADCSS 2014

MODEL DRIVEN ENGINEERING

10

 Modeling environment
 Language  UML 2.0
Modeler  Eclipse/Topcased

 UML specification can be validated early in the development process
 Software UML specification is the heart of the process
 Software architecture (class, interface and package)
 Dynamic behavior (composite structure, state machines and activity)

 Customized UML profile for non-functional properties (AutoJava)
 Associated to Java/RTSJ code generator
 Real-time RTSJ code execution on RTEMS/Leon (AeroVM)
 Functional Java code execution

 Model-based development process
enhancements (“Y-shaped” life cycle)
 Validation (tests generation, model simulation)
 Implementation (code generation)

28/10/2014 ADCSS 2014

Concepts
feasibility

System
requirements

Architectural
design

Detailed
design

Software
development

Unit
testing

Integration
testing

System
verification

System
validation

COMPONENT-BASED ENGINEERING

11

 Generic modular architecture adapted to advanced autonomy needs
 Theoretical preliminary architecture designed by Onéra

» All modules built on same pattern
» Each module in charge of a function
» Hierarchical module organization
» Low-coupling between module

 Decision process combines two tasks
» Reactive control task (compatible

with real-time constraints)
» Deliberative reasoning task for autonomy functions

 “Building blocks” approach
 Early interface definition between main functions
 Independent validation of OBSW components
 Architecture inspired from COrDeT recommandations

 COTS (Components Of The Shelf) approach
 Re-use of previously developped/validated components

28/10/2014 ADCSS 2014

SO
M

M
A

IR
E

12

 INTRODUCTION
 AGATA PROGRAM
 MDE & CBSE
 DEVELOPMENT PROCESS
 OBSW ARCHITECTURE
 CONCLUSION

28/10/2014 ADCSS 2014

VALIDATION TESTS GENERATION

13

 “Black-box” testing (TM/TC external interface)
 Dedicated TM/TC model independent

from design model
 Bench I/F for real-time tests execution

with final OBSW
 Two generation levels
 Unit tests (OCL language)
 Tests sequences (activity diagrams)

28/10/2014 ADCSS 2014

MODEL SIMULATION

14

 Simulates model behavior
based on state machines
and activity diagrams

 “Topcased-Simu” module
 Model-debugging & more
 Early model simulation
 “Co-simulation”

 Standard debug interface

 External events (TC,…)
 W.r.t. selected object
 Smart filtering I/F

 Creates a dynamic model
 From configuration files
 From composite structure

diagrams
 Diagrams of dynamic model

are “animated” in real-time

28/10/2014 ADCSS 2014

AUTOMATED CODE GENERATION (1/5)

15

 Java / RT-Java (RTSJ)
generation capability

 Historic CNES UML profile
“autojava” for NFP
 Tasks real-time properties
 Ports and buffers properties
 Shared data protection
WCET…

 “uml2rtsj” code generator
 “UML generators” project

in PolarSys Eclipse IWG
 Based on Acceleo 3
 Features supported

» Class/interface/package
» State machines
» Composite structure

28/10/2014 ADCSS 2014

AUTOMATED CODE GENERATION (2/5)

16

 Generates a component
oriented architecture

 Inspired from COrDeT
 SOIS Message Transfer

Service implemented
 Interaction layer entirely

generated from model
 2 « execution plateforms »

supported
» Classic JRE
» AeroVM + RTEMS

 Limitation wrt COrDeT
 Reduced set of NFP
 Components design and

components interactions
in the same model

…

28/10/2014 ADCSS 2014

AUTOMATED CODE GENERATION (3/5)

17

 Standalone component generation
 Independent middleware generation
 Direct or Ethernet communication supported
 Extensible to other communication protocols
 Configurated via model decoration

» Separate functional from technical preoccupations
» Benefit from several configurations on the same model

28/10/2014 ADCSS 2014

 Satellite DataBase synchronisation
 SDB often evolves after OBSW developments have started
 SDB contains lots of information used by the OBSW
 TM/TC packets definition and tailoring
 Value of many configuration parameters
 PUS specific information

(parameter ID of all
SW variables,…)

 All relevant information
in SDB is extracted by
automated code generation
 Specific SDB to

Java generator
 SDB changes are

automatically integrated
in the OBSW

AUTOMATED CODE GENERATION (4/5)

18

SDB

Detailed
design

Software
implementation

Unit
testing

System
requirements

28/10/2014 ADCSS 2014

AUTOMATED CODE GENERATION (5/5)

19

 Code generator easy to evolve thanks to Acceleo
 Several interaction layer improvements to access to system demands

» Asynchronous signals priorities
» Communication errors handling
» Sub-states management

 “RT-Java” code associated
execution plateform
 AeroVM (adaptation of JamaicaVM

made by AirbusDS/Aicas for ESA)
 RTEMS + Leon TSIM-HW board
 Real-time evaluation of the autonomous AGATA OBSW (hybrid simulation)

» CPU needs compatible with today's standards (Leon2)

 Integration of OPISS virtual machine (OBCP engine)
 2 components dedicated to OPISS developed independently
Merging « rendez-vous » organized on a monthly basis

» Mainly to integrate SDB-related evolutions

28/10/2014 ADCSS 2014

 Based on UML

software specification
 Reduced software

production time through
 Tests generation
Model simulation
 Code generation

 Support component-based
engineering

 Process integrated in Eclipse
 … but remains experimental

 Model driven engineering relies extensively on tooling

RESULTING “Y” LIFE CYCLE

20

Unit Testing

Integration testing

Generated code

Concepts
feasibility

System
requirements

Architectural
design

Detailed
design

System
verification

System
validation

UML
model

“Automated”
steps

SDB

28/10/2014 ADCSS 2014

SO
M

M
A

IR
E

21

 INTRODUCTION
 AGATA PROGRAM
 MDE & CBSE
 DEVELOPMENT PROCESS
 OBSW ARCHITECTURE
 CONCLUSION

28/10/2014 ADCSS 2014

AGATA OBSW ARCHITECTURE

22

 Hierarchical functional architecture
 « Monitor » layer
 Abstraction of equipment units
 « Vertical modularity »

 Application processes
 Reactive/deliberative

decision process

Satellite

Applications

Monitors

Equipment units

Attitude

Orbit

Power

Mission

GPS monitor

GAM monitor

MEM monitor

BAT monitor

TMT monitor

GPS

GAM
antenna

Memory

Battery

TM transmitter

OBCP

TC receiver

TCR monitor

Reactive Deliberative

Control task compatible
with real-time constraints

Enable/disable

Results

Reasoning task for long-
term computations

28/10/2014 ADCSS 2014

 OBSW architecture
 9 components

» 1 « basic component »
dedicated to shared
services (Clock, TM, TC,…)

» 5 dedicated to classical
SW functions (Att, Orb,…)

» 2 dedicated to OBCPs
(2 OPISS instances)

» 1 dedicated to onboard
file management

 « Horizontal modularity »
» Minimum interaction between

components
» Extensive use of « publish/

subscribe » messages

« AGATA » COMPONENT-BASED APPROACH

23

Satellite Component
Satellite
monitors Satellite

application Datapool

Orbit Component
Orbit

monitors Orbit
application Datapool

Attitude Component
Attitude
monitors Attitude

application Datapool

Power Component
Power

monitors Power
application Datapool

Mission Component
Mission

monitors Mission
application Datapool

OBCP Component

OBCP
application Datapool

Basic Component
Common
monitors

Datapool Clock
management

Telemetry
management

Telecommand
management Send/receive communication

Publish/subscribe communication

28/10/2014 ADCSS 2014

 Distributed OBSW architecture
Multiple configurations (model decoration)
 No impact on components

COMMUNICATION PROTOCOLS HANDLING

24

Main module

OBCP module

Mission module

Send/receive communication

Satellite component
Satellite
monitors

Satellite

application Datapool

Orbit component
Orbit

monitors

Orbit

application Datapool

Attitude component
Attitude
monitors

Attitude

application Datapool

Power component
Power

monitors

Power

application Datapool

Mission component
Mission

monitors

Mission

application Datapool

OBCP component

OBCP
application Datapool

Basic component
Common
monitors

Datapool Clock

management
Telemetry

management
Telecommand
management

Publish/subscribe communication

Et
he

rn
et

28/10/2014 ADCSS 2014

SO
M

M
A

IR
E

25

 INTRODUCTION
 AGATA PROGRAM
 MDE & CBSE
 DEVELOPMENT PROCESS
 OBSW ARCHITECTURE
 CONCLUSION

28/10/2014 ADCSS 2014

CONCLUSION

26

 AGATA development process
Model driven approach

» Unique language and unique model  UML (instead of several DSL)
» Unique development environment  Eclipse (all tools used are open source)
 Y-shaped life cycle

 Component based engineering
» Best answer to increasing systems complexity
» Relies largely on interface standardization
» Normalization is required  COrDeT

 System issues
 Autonomy

» Component-based architecture (reactive/deliberative decision process)
» Short implementation loop (validation process nested in development process)

 « Hardware independency »
» Hierarchical architecture with abstraction of equipment units (monitors)
» Communication layer generated from UML model (several execution platforms supported)
» Dispatching of SW functions can be made via model decoration

28/10/2014 ADCSS 2014

27

Thank you for your attention !

Questions ?

28/10/2014 ADCSS 2014

28

ANNEXES

28/10/2014 ADCSS 2014

UNIFIED MODEL-BASED VALIDATION

29

 Commonalities between validation tests generation and model simulation
 Require UML specification of the OBSW
 Tests scenarios described using activity diagrams
 Existing – but independent – Topcased plugins

 Complementary approachs
 Early model-debbuging using model simulation (validation of OBSW specification)
 Intermediary model + code validation (“co-simulation”)
 Validation of the final OBSW using tests generation

 Not yet implemented
 Future works
 Unified method
 Unified tool

System
requirements

System
verification

Architectural
design

Integration
testing

Detailed design, SW
dvp, unit testing

High-level tests
scenarios definition

Tests execution on
running final OBSW

Tests generation

Deteiled execution
scenarios definition

Model simulation

28/10/2014 ADCSS 2014

UML GENERATORS PROJECT

30

 Available shortly in PolarSys Eclipse Industrial Working Group
 Based on Acceleo 3 (Obeo technology)
 Any generator which consumes or produces UML models
 The initial contribution provides five generators (4 developed for CNES)
 UML2Java: converts Class and State diagrams into Java code
 UML2C: converts Class, Activity and State diagrams into C code
 C2UML: reverses C code into a UML model
 UML2RTSJ (requires Autojava profil): converts Structure Composite, Class and

State diagrams into Java code or RTSJ (Real Time Specification for Java) code
 Java2UML: reverses Java code to a UML model

28/10/2014 ADCSS 2014

	Slide Number 1
	Slide Number 2
	CONTEXT
	Slide Number 4
	AGATA Program
	AGATA ground DEMONSTRATOR
	AGATa-one mission
	Slide Number 8
	TOWARD A New paradigm
	MODEL DRIVEN ENGINEERING
	Component-based ENGINEERING
	Slide Number 12
	Validation tests generation
	Model simulation
	Automated code generation (1/5)
	Automated code generation (2/5)
	Automated code generation (3/5)
	Automated code generation (4/5)
	Automated code generation (5/5)
	resulting “Y” life cycle
	Slide Number 21
	AGATA OBSW Architecture
	« AGATA » Component-based approach
	Communication protocols handling
	Slide Number 25
	Conclusion
	Slide Number 27
	Slide Number 28
	UNIFIED Model-based validation
	UML generators project

