Standardisation of PF/PL Interfaces and Deployment of common Building Blocks ADCSS 2014 Noordwijk, 29.10.2014

R.Roques, Airbus Defence and Space Earth Observation, Navigation & Science

Mission types vs SAVOIR ASRA P/L interface classes

→ SpaceWire P/L network

DEFENCE & SPACE

Airbus DS Missions	ASRA class				
	Direct (PF RIU)	PLIU	PLMU (ICU)		
Commercial optical EO		SPOT6/7/			
Commercial Radar EO			TandemX, Future		
Institutional operational EO		Sentinel-2, SEOSAT	Sentinel-1, Sentinel-5P, MetOp SG (9)		
Institutional exploratory EO	SWARM	Aeolus	EarthCare (4), Merlin		
Science	GAIA		LISA PF		
Science / EO (secondary payloads)	SEOSAT				
Deep Space			BEPI (9), Solar Orbiter (10)		
→ Efficiency of PLMU (ICU	HW+SW)				
development and integrati	on is key for	Primes			

Presentation contents

In on-board data handling and software area:

- Some lessons learned from payload development projects
- Which Platform/Payload Interface functions should be standardised / made common ?
- Which level of standard building block to deploy to support standardisation ?

Future enabling technologies

Some lessons learned from P/L development projects

At Airbus DS, regarding Platform/Payload Interface and ICU standardisation /commonality initiatives in ESA projects :

- Start initiatives early to reach really mature specs at ICU ITTs
- Spacecraft Prime to be active. Instrument contractors to master their end-toend process. But just relying on bottom up commonality is not enough.
- ICU software is complex. Special attention to be paid when it is developed by a 2nd tier supplier. Prime to set up risk mitigation strategies.
- Common building blocks to come with the relevant validation information to avoid re-validation by all users and hence, waste of effort
- Harmonise database structure, naming. Avoid, as far as possible, data base tool conversions between stakeholders
- Flexibility for instrument mode definition is needed. Mode rationalisation to be limited.

Standardisation potential of ICU functions

	Function	Possible common cross-mission solution (at least at S/C product line lvl)	Possible common solution to all instruments of a mission	Instrument specific
	PF I/F discrete links (SOL, On, Off)	\checkmark	\checkmark	
	Platform Interface data link	✓	✓	
	Boot, Service Mode	✓	✓	
	Time reference (S9)	\checkmark	\checkmark	
	Instrument internal sync. signals		✓(envelope)	\checkmark
	Instrument internal 2 nd tier data links		✓(envelope)	
	Thermal control: operations/control laws Therm/heaters i/f		? (envelope)	✓
	Operational Modes		? (basics)	
	PUS librairies:			
	S1 : TC S3 : Housekeeping	✓	\checkmark	
	S5 : Event reporting S6 : Memory management S12 : O/B Parameter monitoring S17 : test S19 : Event / action S148 : O/B Macro-procedures	Standard fu beyond ICU HW + encompass appl	unctions may go HW dependent SV lication layer servi	V and ces
	S140 : Parameter mgt		?	\checkmark
	S2 : Device cmd distib S142 : Functional monitoring			\checkmark
	Instrument mission TM	?	✓	
5	Instrument DB structure, naming Standardisation o	? f PF/PL Interfaces and deployment of common bu	uilding blocks	

Levels of possible standard ICU building blocks

Within a project :

- 1. Key interoperability concepts detailed in applicable doc.
 - Technical definition of functions, links, protocols, modes...
- 2. Common ICU
 - Configurable equipment family with, typically, a core section, a variable I/O section and software
- 3. Common ICU processor module
 - incl. hardware dependent software
- 4. Common On-board data management software
 - « execution platform », incl. PUS services
 - Software development environment
- 5. Common ICU processor module design
 - Distribution to ICU contractors (schematics, layout, VHDL...)

Criteria for standard building blocks strategy selection

Benefits

- Spacecraft flight operations simplification
- Spacecraft AIT/ground operations simplification
- Engineering effort simplification at Prime
- Instrument development risk reduction
- Instrument development cost reduction

Other aspects

- Adequation/flexibility wrt geo distribution
- Compatibility with usual ICU supplier industrial capabilities
- Built-in flexibility to cope with Instrument design evolutions during development phase
- Capability to define an « envelope » without overdesign

Comparison of commonality strategies

	1	2	3	4	5
	Key interop. Concepts	Common ICU	Common Proc. Module	Common Core Software	Common ICU PM HW design
Simpler Spacecraft flight ops	+++	+++	0	+++	0
Simpler Spacecraft AIT/ground ops	+	+++	0	+++	0
Simpler Engineering effort at Prime	+	+++	++	+++	+
Lower Instrument development risk	0	+++	++	++	+
Lower Instrument development cost	0	+++	+	++	0
Shorter Instrument delivery schedule	0	+	++	++	0
Adequation, flexibility wrt geo distr.	+++	-	+	+	+++
Adequation with supplier delivery capabilities	+++	-	++	++	+++
Flexibility wrt Instrument design changes	+++	-	+++	+++	+++
Envelope solution without overdesign	+++	-	++	++	++
Deployment of a common process	or modul	e with r	elevant c	ore	
software (3+4) provides benefits to	o Prime a	nd Instr	ument		

Contractors

s

MetOp SG Instruments as an example

Instrument	ICI	MWI	MWS	SCA	RO	3MI
Satellite	В	В	Α	В	A&B	Α

ICU Hardware					
Processor				X	
Power & heaters		X		Х	
Standard I/O		X		Х	
Specific I/O & pwr		X		Х	Х
Specific Proc.			Х	Х	

ICU Software						
Cmd & Ctl application	X	Х	X	Х	X	X
Science data proc.						Х
Execution Platform (incl. PUS)					X	
Low Level (HW dependent)					X	

Possible commonality approach				
(1) Interface & Ops doc level				
(2) ICU level			X	
(3) PM HW module + HW dep SW			X	
(4) PIM core Data Mgt software			X	

common function possible

specific function, no commonality

- Deployment of a common PIM can be offered to 5 out of 6 instruments
- Common ICU Equipment can be considered for up to 4 instruments

Common Platform Interface Module (PIM) – 1/2

PIM « package » for MetOp SG

- PIM hardware module
 - Platform/Instrument electrical/data link interfaces
 - Provides processing environment for ICU Application software
 - A set of Instrument internal 2nd tier data links and sync lines
- PIM software
 - Boot and service SW (boot, HW dependent SW, service mode)
 - Execution platform for Application software (PUS service, RT OS) in operational mode
 - (Simple) tools for Application SW development and validation

Microprocessor	LEON 2/3 approx. 60 MHz
Volatile memory	typ. 512 MB SDRAM
Non volatile	> 8 MB FLASH or EEPROM
Internal SpaceWire	2 links on backplane
External SpaceWire	2 links on external connectors
Other data links	2 UART @ 1 Mbps
Sync	Configurable Sync generator
Sync Mass	Configurable Sync generator < 1kg (single PCB)
Sync Mass Power	Configurable Sync generator < 1kg (single PCB) 7 W typ.
Sync Mass Power Implementation	Configurable Sync generator < 1kg (single PCB) 7 W typ. typ.: 1 SoC + 1 FPGA +
Sync Mass Power Implementation	Configurable Sync generator < 1kg (single PCB) 7 W typ. typ.: 1 SoC + 1 FPGA + upscreened memory

Boot & Service Mode

209	Execute BIT	209	Report ASW death report
209	BIT TM	209	Death report
209	Load SW image	209	Execute w arm reset
209	Report anomaly during SW image loading	209	Stay in boot and service mode
209	Start ASW		

Application Software execution platform

1	Telecommand Verification	1, 2, 7, 8
3	Housekeeping and Diagnostic Data reporting	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 25, 26, 129, 130, 131, 136, 138 139
5	Event Reporting	1, 2, 3, 4, 5, 6, 133, 134
6	Memory management	2, 5, 6, 9, 10, 128
9	Time Management	132, 135
12	On-Board Parameter Monitoring	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
17	Test	1, 2, 3, 4
19	Event & Action	1, 2, 3, 4, 5, 6, 7, 130, 131
148	On-Board Macro Procedure	2, 3, 4, 8, 9, 10, 11, 128, 129, 130, 131, 132, 133, 140, 141, 142

Common Platform Interface Module (PIM) – 2/2

What makes PIM-based commonality (even more) efficient

- A PIM form factor that fits all Instrument needs
 - Or conversely, the use by all Instruments of a common form factor
- Application Software execution platform (incl. PUS library) commonality between ICUs and central OBC software
 - To benefit from past/on-going PUS developments and be able to use wide range of PUS subservices without incurring a high cost at Instrument level
 - To minimise Instrument/platform incompatibility risks during development

Promising technologies

A more compact Platform Interface Module

- Replace the current framed module (« unit slice ») by a single compact « component » gathering micro-processor SoC, FPGA, memory
 - Deployment on instruments with stringent mass/power/volume requirements, e.g. deep space exploration
- A single processing function to replace the PIM of several instruments
 - ➔ Time/Space Partitioning as enabling technology
 - Mass/Power/Volume benefits while maintaining development/validation independence between platform and payload and between payloads
 - → SW/SW Interfaces to be standardised

Conclusion

- Commonality based on
- Processor Module + Boot/Service SW + Execution Platform SW is an efficient lever to increase the efficiency of spacecraft development which involve ICU based Instruments
- Payload developers now able to focus on the functions and performances specific to their instrument
- Prime to play an active role to promote the commonality, including possible synergy with central platform software
- Future technologies (HW and/or SW) such as TSP and very compact electronics may bring additional benefits regarding mass, volume, power

