ometry Exampl

data Valida

lidation of sHG₁G₂

ioing further

ter! Summ

Size-determination of NEOs ABSOLUTE MAGNITUDE FROM SKY SURVEYS

B. Carry¹, J. Peloton², M. Mahlke³, J. Berthier⁴, R. Le Montagner²

¹Lagrange, OCA, Nice ²IJCLab, Orsay ³IAS, Orsay ⁴IMCCE, Paris Observatory Diameter? Absolute magnitude Accounting for geometry Example data Validation of sliG₁G₂ Going further Diameter!

$D = \frac{1329}{\sqrt{p_V}} 10^{-0.2H}$

$D = \frac{1329}{\sqrt{p_V}} 10^{-0.2 H_V}$

Diameter?

2/18 B. Carry, OCA, 2024/11/11

Diameter?

$H \coloneqq H_V(r = 1, \Delta = 1, \gamma = 0^\circ)$

 $D = \frac{1329}{\sqrt{p_V}} 10^{-0.2 H_V}$

rther Diameter

Computing the absolute magnitude

• Distance

$H=m - f(r, \Delta)$

3/18 B. Carry, OCA, 2024/11/11

• Distance

• Phase

Computing the absolute magnitude

 $\psi\,{\rm Conjonctions}$ Magnitude 2 33 $f(r, \Delta)$ ▲ Oppositions 500 1000 2500 1500 2000 ○ HG Bowell1989 $H=m - f(r, \Delta)$

Computing the absolute magnitude

• Distance

O HG Bowell1989

 $H=m - f(r, \Delta)$

• Phase

O HG Bowell1989 $\circ \ HG_1G_2 \ \text{Muinonen+2010}$ ○ HG^{*}₁₂ Pentillä+2016 (previous talk)

 $H=m - f(r, \Delta) - g(\gamma)$

Data from Oszkiewicz+2011

(48% success rate)

Diameter?

ation of sHG $_1$ G $_2$ Go

further Diameter!

Summary

Computing the absolute magnitude - Issues

• Many fits to phase function fail

- $\circ~$ Model is simple: 2 $_{\rm (HG,~HG_{12}^{\star})}$ or 3 $_{\rm (HG_{1}G_{2})}$ parameters only
- $\circ~$ Generally $\it N_{obs} \gg \it N_{params}$
- Why fit fails?

• Potential sources of failure

- Observations close-enough to opposition? 3-5°, Mahlke+2021
- Photometric uncertainties? Central limit theorem for $N_{obs} \gg 1$
- Photometric systematics? See Hoffman+2024 and talk tomorrow
- ▷ Why fit fails in some targeted studies? Devogèle+2020, Jackson+2022

• The issue is the geometry!

- $\circ \ H := H_V(r=1,\Delta=1,\gamma=0^\circ)$
- $\circ~$ H is defined for ${\it spheres}$

Validation of sl

ation of sHG₁G₂

g further Diame

Summary

Computing the absolute magnitude - Solution?

5/18 B. Carry, OCA, 2024/11/11

Computing the absolute magnitude - Solution?

Distance

O HG Bowell1989

- O HG Bowell1989 $\circ \ HG_1G_2 \ \text{Muinonen+2010}$ ○ HG^{*}₁₂ Pentillä+2016 (previous talk)
- $H=m f(r, \Delta) g(\gamma)$

• Aspect!

Mahlke+2021

See also Jackson+2022

• Aspect

 $H=m - f(r, \Delta) - g(\gamma) - s(\alpha, \delta)$

Computing the absolute magnitude - Solution?

• Phase

O HG Bowell1989

 $\circ \ HG_1G_2 \ \text{Muinonen+2010}$ ○ HG[★]₁₂ Pentillä+2016 (previous talk)

 $H=m - f(r, \Delta) - g(\gamma)$

 Distance $\psi\,{\rm Conjonctions}$ Magnitude $f(r, \Delta)$ ▲ Oppositions 2500 500 1000 2000 1500 O HG Bowell1989

further Diameter!

Summary

—— Taking the geometry into account

- Let's assume asteroids are oblate spheres
 - Dimensions $a = b \ge c$
 - \circ ($lpha_0$, δ_0) the spin-axis coordinates $\rightarrow \wedge = {}_{\sf aspect angle}$
 - R the oblateness (a/c)
- Introducing the sHG_1G_2 model Carry+2024

$$H = m - f(r, \Delta) - g(\gamma) - s(\alpha, \delta)$$

$$\circ$$
 $s(lpha,\delta)=2.5\log_{10}\left[1-(1-R)\left|\cos\Lambda
ight|
ight]$

- Model with $3N_{filter} + 3$ parameters: $(H,G_1,G_2)_{\times N} + (\alpha_0,\delta_0,R)$
- Avoid opposition-to-opposition issues Jackson+2022 Single-apparition for NEOs
- ▷ Wavelength dependance of the phase function Sanchez+2012, Binzel+2019, Cellino+2020, Mahlke+2021

• This changes the definition of absolute magnitude

•
$$H := H_{filter}(r = 1, \Delta = 1, \gamma = 0^{\circ}, \Lambda = 90^{\circ})$$

 $\circ~$ H is defined in the equator

= Illustration of sHG₁G₂ model

7/18 B. Carry, OCA, 2024/11/11

xample data

Validation of sHG₁G₂

ioing further Dian

Summary

= Illustration of sHG_1G_2 model

(H, G₁, G₂) are biased by geometry!

Particularly true for NEOs

g further Diamet

Summary

= Illustration of sHG₁G₂ model

7/18 B. Carry, OCA, 2024/11/11

Moller+2021 - https://fink-portal.org/

— Validation: Quality of fit =

Validation of sHG1G2

Diameter? Absolute magnitude Accounting for geometry Example data Validation of $\mathfrak{sHG}_1 \mathfrak{G}_2$ Going further Diamet Walidation: Phase parameters $\Leftrightarrow g(\gamma)$

ATLAS, Mahlke+2021 (next talk)

Validation of sHG₁G₂

Going further Diame

Summary

Bonus: Spin parameters $\Leftrightarrow s(\alpha, \delta)$

Data from SsODNet via rocks (Berthier+2023), see:

https://ssp.imcce.fr/forms/ssocard

https://rocks.readthedocs.io/en/latest/

11/18 B. Carry, OCA, 2024/11/11

\longrightarrow Validation: Colors \Leftrightarrow H =

— Disc.1: Taking the **full** geometry into account

- Let's assume asteroids are tri-axial ellipsoid
 - Dimensions a > b > c
 - (α_0, δ_0) the spin-axis coordinates $\rightarrow \Lambda = \text{aspect angle}$
 - \circ P_{s} sidereal rotation period
 - a/b and a/c the axes ratio
- Introducing the ssHG₁G₂ model Preliminary!
 - $H = m f(r, \Delta) g(\gamma) ss(\alpha, \delta, t)$
 - $ss(\alpha, \delta, t) = [projected area of a spinning ellipsoid on the sky] Surdej & Surdej (1978)$
 - **Frugal** model with $3N_{filter} + 5$ parameters: $(H,G_1,G_2)_{\times N} + (\alpha_0,\delta_0,P_s,a/b,a/c)$
 - Critical aspect : initial estimates & local minima

• This changes (again) the definition of absolute magnitude

- $H := H_{\text{filter}}(r = 1, \Delta = 1, \gamma = 0^{\circ}, \Lambda = 90^{\circ}, \varphi = 0^{\circ})$
- H is defined in the **equator**, facing the **prime meridian**
- Capacity to compute the surface area during mid-infrared observations WISE, NEOMIR

				Going further	
— III	lustration of	f agHC.C. mo			

ata Validation of

alidation of sHG1G2

Going further Diame

Summary

= Illustration of ssHG1G2 model =

ata Validation

'alidation of sHG1G2

Going further Diameter

Summary

= Illustration of ssHG₁G₂ model

 $D = \frac{1329}{\sqrt{p_V}} 10^{-0.2H}$

 $D = \frac{1329}{\sqrt{p_F}} 10^{-0.2H_F}$

Diameter!

$$D = \frac{1329}{\sqrt{p_F}} 10^{-0.2H_F}$$

$$p_F = f(G_{1,F},G_{2,F})$$

15/18 B. Carry, OCA, 2024/11/11

Diameter!

ometry Exampl

data Validation c

lation of sHG₁G₂

Going further Diameter!

Summary

Disc.2: Size Determination from phase curves

ation of sHG₁G₂

er Diameter!

Summary

Disc.2: Size Determination from phase curves

netry Example

ata Validation c

ation of sHG₁G₂

urther Diameter!

Summary

= Disc.2: Size Determination from phase curves

etry Example d

ita Validation o

ation of sHG1G2

urther Diameter!

Summary

Disc.2: Size Determination from phase curves

—— Summary and discussions

- Phase curves from sparse photometry
 - $\circ~$ Required for H \rightarrow diameter
 - $\circ \ \texttt{HG} < \texttt{HG}_{12}^\star < \texttt{HG}_1\texttt{G}_2 < \texttt{sHG}_1\texttt{G}_2 < \texttt{ssHG}_1\texttt{G}_2$
 - Occam's razor **vs** sparsity of data F-test...

• Size determination of potentially hazardeous near-Earth objects

- Geometry must be taken into account vs biases on (H,G_1,G_2)
- Promising new approach to estimate size from phase curves only
- $\circ~$ Higher fidelity model \rightarrow diameter estimate with mid-infrared wise, <code>NEOSurveyor</code>, <code>NEOMIR</code>
- \triangleright Low-phase angle observations required for G_1G_2 LSST, FlyEye

• Era of large sky surveys & alert streams

- Currently: ATLAS, ZTF, Gaia 10⁵ SSOs, inc. 30k NEOs
- Soon: LSST, FlyEye 10⁶ SSOs, inc. 10⁵ NEOs
- ▷ Need robust & fast, multi-model & multi-sources fits

Summarv

Extra: $ssHG_1G_2$

= Preliminary results on ssHG₁G₂

Extra: $ssHG_1G_2$

= Preliminary results on ssHG₁G₂

Extra: $ssHG_1G_2$

— Preliminary results on ssHG₁G₂

