

NEO absolute magnitudes with H,G₁,G₂ photometric function

Antti Penttilä University of Helsinki, Finland

Background

- The lightcurve-corrected photometric observations of asteroids at different phase angles are used to predict the *H*-parameter, the absolute magnitude of an asteroid at backscattering
- The absolute magnitude links to asteroid size estimation via $\log_{10} D = 3.1236 0.2 H 0.5 \log_{10} p_V$

where D is the asteroids' diameter and p_V the albedo

- Errors in estimating *H* will propagate to errors in *D*
- The *HG* photometric function was adopted in 1985 by IAU
 - One parameter *G* controlling the shape of the reduced magnitude curve as a function of the phase angle
 - For cases with low number of data points, especially close to opposition, version where *G* is fixed to 0.15 is often used.

...background

- In 2012 IAU adopted the *HG1G2* function for fitting magnitude-phase relation
 - Improved flexibility close to opposition with three base functions instead of two as in *HG*-function
 - Base functions defined as splines
 - One more parameter
 - Systematic use in, e.g., Minor Planet Center not done (?)
- Due to increased demands towards data, also a two-parameter version(s) of *HG1G2*, namely the *HG12* (and *HG12**) were introduced

...background

- Linear connection between G1 and G2 was seen, except not holding well the E and D-types
- Connection parametrized as single parameter *G12*

• Main question: what function should one use in predicting absolute magnitude *H*?

From Penttilä et al. (2016), Planetary and Space Science123

Simulation study

- Let's take the well-curated photometric data of 93 asteroids that was used in deriving the *HG1G2* system and do a simulation test
 - Predict the absolute magnitude *H* with the *HG1G2* function
 - Randomly, drop parts of data and fit using different functions, see the prediction error in *H*
 - Test done leaving 30, 50, 70, or 90
 % of observations per asteroid

Antti Penttilä

Bias and error in general

Worst-case predictions, *HG* with fixed *G*=0.15

Worst-case predictions, HG

Worst-case predictions, *HG12*

Worst-case predictions, *HG1G2*

Bias and error in general, with HG12 without E and D types

Solution

- My take on the proposed solution has two methods:
 - 1. Test *HG1G2*-based systems with different number of parameters, select the best for the data based on BIC or similar model selection parameter

• See

https://psr.it.helsinki.fi/HG1G2/

Online calculator for $H_{r}G_{1}$, G_{2} photometric system

Version 2022.09

You can download the <u>example file with (44) Nysa observations</u> for testing this tool. The linear, unconstrained version implements the IAU-adopted system from <u>Muinonen et al. (2010</u>), and the nonlinear, constrained version the extension from <u>Penttilä et al. (2016</u>). For local copies of the articles, see <u>http://wiki.helsinki.fi/display/PSR/HG1G2+tools</u>. Please cite if you publish results using this tool.

Inputs	Compute P	lot, errors, report
Choose File 44_Nysa.dat		
Name: unknown	Olinear, unconstrained fit	
	Nonlinear constrained fit	
Input ready	Compute fit	Errors for selected model Give fit report
23 values read for target 'unknown	H, G_1, G_2 and H, G_{12} nonlinear and constrained fits are done in magnitude values. One-parameter H fits always in magnitude	- <i>V</i> (a °)
angle(°) magnitude error	values.	₽ Contraction of the second s
0.17 6.911 0.03	The recommended model, according to BIC-value of the fit, is	7.00 8
0.36 6.972 0.03	the three-parameter (H,G_1,G_2) model:	100 M
0.63 7.014 0.03		
0.75 7.033 0.03	$H G_1 G_2 k (\circ)^{-1}$ wRMS BIC	7.25
0.98 7.052 0.03	6.9044 0.04988 0.6716 -0.01161 0.05001 -128.4	0
1.23 7.08 0.03	The one-dimensional models suggest that the target 'unknown'	000
1.02 7.105 0.03	is best explained as E-type.	7.50 0 0
2.02 7.120 0.03	All models in DIC recommended orders	0
9.27 7.204 0.02	Air models in Brc-recommended order:	7.75
0.78 7.341 0.03	type $H = G_1 = G_2 = k(\circ)^{-1}$ wRMS Δ BIC	
11 59 7 385 0.03	\bigcirc H.G ₁ ,G ₂ 6.9044 0.04988 0.6716 -0.01161 0.05001 0.000	0.0 5.0 10.0 15.0 20.0
12.94 7.425 0.03		
13.2 7.426 0.03		Fit error log window
13.27 7.427 0.03	$O_{H,G_{12}}$ 6.6947 0.000 0.5324 -0.01000 0.5364 106.0	
13.58 7.433 0.03	○ H(S/M) 6.7201 0.2588 0.3721 -0.01957 0.6128 109.0	
13.81 7.437 0.03	○ H(D) 6.8797 0.9617 0.01645 -0.03294 0.6530 111.9	
13.89 7.434 0.03	○ <i>H(P)</i> 6.8142 0.8343 0.04887 -0.03204 0.7354 117.4	
17.16 7.511 0.03	\bigcirc H(C) = 6.7670.0.8228 \bigcirc 0.01938 \bigcirc 0.3280.0.8569 124.4	
18.52 7.524 0.03	0 11(0) 0.7070 0.0220 0.01930 0.03200 0.0309 124.4	
19 7.551 0.03		
19.4 7.545 0.03		
21.47 7.599 0.03		

Solution

Note: talk by student of M. Devogele
 (?) at ACM 2023

From Mahlke et al. (2021), Icarus 354

