Thermal infrared Observations of Near-Earth Asteroids with TAO 6.5 m telescope

Jin BENIYAMA^{1,2} & Marco DELBO¹

¹ Observatoire de la Côte d'Azur ² The University of Tokyo

15:40–16:05 November 12, 2024 — 2024 EU-ESA Workshop on Size Determination of PHNEOs

1 / 18

Photographed by TAO Project, The University of Tokyo/Akio Nakanishi

TAO: the University of Tokyo Atacama Observatory

- Led by the University of Tokyo with the help of the government & international collaborations
- Co. Chajnantor in the Atacama Desert (5,640 m) ightarrowprecipitable water vapor (PWV) ~ 0.5 mm
- 1 m telescope (miniTAO, 2009–) 6.5 m telescope (2025–)

https://www.u-tokyo.ac.jp/focus/en/press/z0508_00344.html https://www.ioa.s.u-tokyo.ac.jp/TAO/news/20240430/index.html https://www.eso.org/public/images/potw1150a/ https://www.nayoro-obs.jp/binarystar2017/slides/S3-1 Takahashi.pdf

oject CC-BY-ND

TAO

5,000 m

TAO timeline

1998 2009 2011 Project start miniTAO (1 m)operation

2018-2023 2024

Highest astronomical observatory

Site completion ceremony

Science observations start

Engineering & science observations on Subaru telescope

C/2023 A₃ (Tsuchinshan-ATLAS) October 1, 2024

Photographed by TAO Project, The University of Tokyo/Akio Nakanishi

TAO/MIMZUKU

• **TAO:** the University of Tokyo Atacama Observatory

- ► 6.5 m telescope (similar to Magellan Telescopes)
- Co. Chajnantor **5640m**

- MINIZUKU: the Mid-Infrared Multi-field Imager for gaZing at the UnKnown Universe.
 - first-generation mid-infrared instrument (Kamizuka+2022)
 - wide wavelength range of 2–38 µm
 - NIR < 5.3 μm
 - MIR-S 7–26 μm
 - MIR-L 25–38 µm

6.5 m telescope (illustrative purposes only)

MIMIZUKU

The University of Tokyo Atacama Observatory Project http://www.ioa.s.u-tokyo.ac.jp/TAO/news/20211201/index.html

Motivation: Surface properties of tiny (D < 100 m) NEAs

Regolith covered? Dense rock? Porous rock?

- most of its surface is exposed bare rock (Ostro+1999)
- Low thermal inertia of tiny fast-rotators (Fenucci+2021, 2023) - 2011 PT (D=35 m, P=11 min) - 2016 GE₁ (D<20 m, P=34 s)
- Photometric phase slope—albedo relation (Belskaya+2000) is not valid in NEAs? due to the difference in size between MBAs and NEAs? (Arcoverde+2023)

Ostro et al., 1999, Science, 285, 23. Belskaya & Shevchenko 2000, Icarus, 147, 94. Arcoverde et al., 2023, MNRAS, 523, 739.

Talks by Thomas Müller & Marco Delbo

© Kiso Observatory, The University of Tokyo

Tiny (D < 100 m) NEAs: observational difficulties

2020 March

Previous studies of (tiny) NEAs in thermal infrared

Quick response observations soon after discovery with mainly one telescope

Or

Prepared observations with multiple telescopes

Muller et al., 2013, A&A, 558, A9. Reddy et al., 2024, PSJ, 5, 141. Lopez-Oquendo, 2024, Ph.D. dissertation

2005 YU₅₅ D ~ 300 m

Quick response thermal infrared observations with TAO

Thermal flux (mainly) depends on the size - Known: H (optical brightness) w/large error - Unknown: albedo (p_V) , size (D)

Talks by Thomas Müller & Marco Delbo

Aim: *p*_v distribution of tiny NEAs $(\leftrightarrow size determination)$

Synergy with all-sky survey Tomo-e Gozen

Feasibility of follow-up observations of real tiny NEAs

- Targets: 58 tiny NEAs observed in Japan (Beniyama+2022)
- Site: in Chile (La Silla, 809)
- Date: 24 hours after observations in Japan

JPL/HORIZONS (https://ssd.jpl.nasa.gov/horizons/) Beniyama et al., 2022, PASJ, 74, 877.

28

Synergy with all-sky survey Tomo-e Gozen

Synergy with all-sky survey Tomo-e Gozen

Feasibility of follow-up observations of real tiny NEAs

- Targets: 58 tiny NEAs observed in Japan (Beniyama+2022)
- Site: in Chile (La Silla, 809)
- Date: 24 hours after observations in Japan
- Elevation limit: 20 deg
- Standard Thermal Model (STM), $p_V = 0.10, 0.30$

JPL/HORIZONS (https://ssd.jpl.nasa.gov/horizons/) Beniyama et al., 2022, PASJ, 74, 877.

Thermal flux of tiny NEAs in Chile

48(/58) asteroids are above horizons in La Silla

Thermal flux of tiny NEAs in Chile

48(/58) asteroids are above horizons in La Silla

Expected results

- 58 tiny NEAs (D < 100 m)
 - above horizon in Chile: 48

 - good candidate : 25
 normal candidate : 20
 - not enough sensitivity : 3
 - below horizon in Chile: 10

• The 58 NEAs were observed in 2 years \rightarrow follow-up candidates <u>N~20/year</u>

 \rightarrow p_V distribution of ~100 tiny NEAs in 5 years (total observation time ~ only 4 nights)

Forthcoming MIR observations of NEAs

Ground-based

- Lower sensitivity
- Easier to maintain

VLT/VISIR

TAO

- <u>flexible</u>

https://irtfweb.ifa.hawaii.edu/gallery/toc.php

IRTF/MIRS

Space-borne

- Higher sensitivity
- More difficult to maintain

large aperture (6.5 m) highest observatory

TAO/MIMIZUKU

16 / 18

JWST

NASA-CFC, Adriana M. Gutierrez (CI Lab)

Surveyor (2027-)

NASA/JPL-Caltech

Other science plans

- Not only p_V , but also **thermal inertia**
 - size dependence?
 - Iarge thermal inertia?
 (e.g., Fenucci+2021, Fenucci+2023)

Intensive observations of selected NEAs e.g., Apophis in 2029

Hung et al., 2022, PSJ, 3, 56. Novaković et al., 2024, PSJ, 5, 11.

Summary

TAO: the University of Tokyo Atacama Observatory

- Co. Chajnantor, Chile's Atacama Desert
- Science observations start in 2025 (planned)
- Highest astronomical observatory (5,640 m)

Preparing quick response thermal infrared observations of tiny NEAs

- MIMIZUKU instrument (2–38 micron)
- tiny NEAs discovered by Tomo-e Gozen survey
- albedo distribution of tiny asteroids **N=100 in 5 years**

Appendix

Sensitivity of MIMIZUKU

