THERMOPHYSICAL MODELING OF (1566) ICARUS FROM GROUND-BASED INFRARED OBSERVATIONS

Eric M. MacLennan Anne K. Virkki

Department of Physics, University of Helsinki, Finland

(eric.maclennan@helsinki.fi)

EU-ESA Workshop on Size Determination of Potentially Hazardous near-Earth Asteroids

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

MacLennan & Virkki

12.11.2024

WHY STUDY (1566) ICARUS?

- potentially hazardous NEA
 - Earth MOID = 0.0352 AU/13.7 LD
 - rare close passes to Earth (every 9, 17 yr)
- possibly linked to Taurid-Perseid meteors (Kasuga & Jewitt 2019)
 - rotational disruption? ($P_{rot} = 2.27$ hr)
 - near-Sun disruption? (Granvik+ 2016)
 - debris hazard to Earth?
- very low radar albedo (Greenburg+ 2017)
 - first asteroid to be observed using radar
 - low signal → no shape model
 - $D_{eff} = 1.44 \pm 0.26$ km
 - uncertain spin orientation, *H* mag, albedo

TALK OUTLINE:

- 1. shape modeling & TPM from space-based observations
 - results overview
- 2. ground-based IRTF/MIRSI observations
 - 2024 observations (close flyby with Earth)
 - reduction steps
- 3. size determination
 - surface temperature modeling
 - observational effects
- 4. albedo estimation (future work & theoretical)
 - visible photometry & absolute magnitude
 - polarimetry
 - multi-epoch near-infrared photometry

SHAPE MODELING & TPM

Photometric Dataset:

- 42 lightcurves from 1968, 2015 (LCDB)
- 5 Gaia DR3 datapoints lightcurve inversion w. MCMC →

(Muinonen+ 2020)

IR Dataset:

- NEOWISE W1 & W2: 3.35 µm, 4.60 µm 2010, 2014, 2020
- Spitzer CH1 & CH2: 3.55 µm, 4.49 µm → (IRAC) 2014, 2017

Thermophysical Model (TPM):

- MacLennan & Emery (2019, 2021)
- use the set of spins and shapes with TPM

MacLennan & Virkki

 $D_{eff} = 1.57 \pm 0.1$ km low thermal inertia (lunar-like) moderate roughness improved spin constraint

SHAPE MODELING & TPM

- bulk density from Yarkovsky drift modeling
 Greenberg+ (2017)
- surface slopes approach 70°
 - 0° = net force is downwards
 - 90° = perpendicular to local surface
- risk of landslides & centrifugal ejection?
 possible explanation for meteor shower link

MacLennan+ in prep

- June 2024: Icarus makes a rare "close" 0.21 AU flyby with Earth
- opportunity to conduct a multi-instrument observing campaign
 - ground-based infrared, near-infrared spectra, visible polarimetry, and photometry were acquired

NASA IRTF OBSERVATION PLANNING

- MIRSI: Mid-Infrared Spectrometer and Imager
 - NEA thermal emission peaks around 10 micron (N-band)
- objects brighter than ~1-2 Jy are most easily detected in sky subtracted pairs
 - multi-wavelength observations possible with narrow filters
- fainter than 1 Jy should be visually bright enough to guide using the MIRSI Optical Camera (MOC)
 - Icarus' N-band fluxes: 200 400 mJy
 - V-band: 15th to 16th mag

MacLennan & Virkki

MIRSI/MOC OBSERVATIONS

- the sky has STRONG thermal emission
 - take short (0.01 sec) exposures
 - co-add hundreds of images
- nod telescope to acquire A-B pairs
 - top left shows a sky-subtracted pair
 - top right shows the stacked pair
- dither the target across the detector
 - Icarus' sky motion was 7-9"/minute
 - guide with MOC (bottom) to ensure the target is positioned correctly on the detector
- Hora+ 2024 describes the basic operation and data reduction steps

MacLennan & Virkki

MIRSI STAR REDUCTION & CALIBRATION

- stars are bright enough to be detected in sky subtracted A-B pairs
- 1. create image mosaics from A-B pairs and extract counts in circular aperture
- 2. derive magnitude extinction factors for absolute flux calibration
 - fit a constant slope (e.g. 0.1 mag/airmass) for all stars (2 per night is enough)
 - critical for high airmass observations
 - can vary up to a factor of 2 across different nights!
- 1. typical 1σ uncertainties are 0.02 to 0.04 mag

MacLennan & Virkki

MIRSI ASTEROID REDUCTION

- use telescope offsets for initial alignment and blind stacking
- search for optimal image shifts to maximize signal in a small aperture
 - requires lots of computation significant increase in ADU counts!! 50 mJy difference

SIZE ESTIMATION

- MIRSI fluxes are consistent with predicted fluxes from space-based results
 - except! for June 16 (highest airmass)
- 30 mJy for 300 mJy source uncertainty corresponds to ~10% size uncertainty
 - without proper stacking, the size estimate would be ~25% smaller

- Icarus' *H* and *p* estimates are uncertain
 - rarely observed near opposition
 - similar situation to other PHAs!!!

MacLennan & Virkki

ALBEDO DETERMINATION

Bond albedo, A

- used in thermal modeling to compute the total amount of absorbed solar radiation
- geometric albedo, p
 - calculated using modeled brightness at zero phase angle
 - defined for a spherical object
- single-scattering albedo, w
 - proportion of incident light scattered
 - more flexible: can use any phase angle

ALBEDOS FROM OPTICAL PHOTOMETRY & SIZE

- simultaneous r'-band photometry using the Opihi 17" telescope on the IRTF
 - large f.o.v. (0.54 deg²)
 - opihi exp. time < mirsi exp. time
- 1. compute phase function parameters
 - use absolute magnitude (*H*) with size estimation from thermal IR $\rightarrow p$
- 2. given the size, model the brightness at some phase angle $\rightarrow w$
 - can use shape model or sphere
 - better for sparse, high phase angle observations (uncertain H magnitude)
- A can be calculated from w and p

MacLennan & Virkki

ALBEDOS FROM POLARIMETRY

- empirical relationship between polarimetric parameter(s) and asteroid geometric albedos
 - P_{max}, P_{min}, h (slope) vs.
 - Bond albedo, A
 - geometric albedo, p
 - single-scattering albedo, w
- typical *p* uncertaintaies are 20% or larger from size & absolute magnitude relationship
- upcoming work will esimate and compare the albedo of Icarus to its polarization properties

Icarus: June, 15 2024 (NOT-ALFOSC)

MacLennan & Virkki

ALBEDOS FROM NEAR-INFRARED PHOTOMETRY?

- thermal excess at longer spectral wavelengths (Reddy et al. 2012) gives **A** to high precision
 - compare to that of **p** from the size & **H**
- near IR multi-photometric thermal contribution is sensitive to albedo
 - thermal / (thermal + reflected) changes with heliocentric distance (R_{au})
 - size independent
 - WISE W1-W2 shows albedo clusters \rightarrow
 - roughness, thermal inertia, shape may have notable effects in some cases
- size can be calculated from albedo and H

SUMMARY & DISCUSSION

- ground-based thermal IR observations with MIRSI camera are possible for small PHAs
 - detection of Icarus (~1.4 km) from 0.21 0.23 AU from Earth
 - proper calibration and analysis is critical to accurate flux estimation
 - comparable size accuracy to space-based observations
- Icarus and other PHAs will rarely be observed near opposition
 - albedo could be calculated using the size and the brightness at any phase angle
 - consider other brightness conventions, e.g. $V(\alpha = 30^{\circ})$ for size estimation?
- how can albedo estimates be improved?
 - improvement in albedo precision and relationship(s) to polarization parameters
 - possible to use near-infrared fluxes to estimate Bond albedos?
 - 10+ years of NEOWISE W1 & W2 data

THANK YOU!

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

MacLennan & Virkki