DOUBLE TROUBLE

Polarimetric Insights into the Didymos-Dimorphos post-DART Evolution

DART

EU-ESA Workshop on Size Determination of Potentially Hazardous NEOs 11-13 November 2024

Zuri Gray (<u>zuri.gray@helsinki.fi</u>) Stefano Bagnulo, Mikael Granvik, Alberto Cellino, Geraint H. Jones, Ludmilla Kolokolova, Fernando Moreno, Karri Muinonen, Olga Muñoz, Cyrielle Opitom, Antti Penttilä, and Colin Snodgrass

1. Introduction

2. Observations & Methods: Instruments & Obs. Mode

ALFOSC @ NOT: Imaging-Polarimetry

FORS2 @ VLT:

Imaging-Polarimetry & Spectro-Polarimetry

2. Observations & Methods:

2. Observations & Methods: Data Reduction

2. Observations & Methods: Data Reduction

2. Observations & Methods:

Pre-Impact (T-1.3 months to T-15 hrs)

 $\alpha = 20 \rightarrow 52^{\circ}$

The system is unperturbed.

Post-Impact (T+4 hrs to T+3 weeks)

 $\alpha = 53 \rightarrow 76^{\circ}$

Post-Post-Impact

(T+3 weeks to T+4 months)

 $\alpha = 76 \rightarrow 7^{\circ}$

The system is characterised by a persistent dust cloud.

The cloud is mostly dissipated.

2. Observations & Methods:

Pre-Impact (T-1.3 months to T-15 hrs)

α = 20**→**52°

The system is unperturbed.

α = 53**→**76°

Post-Post-Impact

(T+3 weeks to T+4 months)

 $\alpha = 76 \rightarrow 7^{\circ}$

New Observations [T+2 years]

 $\alpha = 4 \rightarrow 67^{\circ}$ and more to come

The system is characterised by a persistent dust cloud.

The cloud is mostly dissipated.

3. Results II: Post-Impact

đ

Linear of Degree

Linear of Degree

(%)

Polarisation

3. Results: All Filters

Pre-Impact: typical polarisation phase angle dependence.

Post-Impact: dramatic drop in polarisation after impact.

Muñoz et al. (2020)

- Pre-Impact: typical polarisation phase angle dependence.
- Post-Impact: dramatic drop in polarisation after impact.

50

55

60

65

The ejected particles are smaller and/or brighter than those on the pre-impact surface.

Penttilä et al. (2024), Modelling Linear Polarisation of Didymos-Dimorphos before and after the DART impact.

 $P_m(\alpha; b, c_1, c_2, \alpha_0) = b \sin^{c_1} \alpha \cos^{c_2} \frac{1}{2} \alpha \sin(\alpha - \alpha_0)$

Penttilä et al. (2024), Modeling Linear Polarisation of Didymos-Dimorphos before and after the DART impact.

#2 Light-scattering simulations: particle properties derived from polarisation

Penttilä et al. (2024), Modeling Linear Polarisation of Didymos-Dimorphos before and after the DART impact.

#2 Light-scattering simulations: particle properties derived from polarisation

- Pre-Impact: typical polarisation phase angle dependence.
- Post-Impact: dramatic drop in polarisation after impact.
 - The ejected particles are smaller and/or brighter than those on \geq the pre-impact surface.

(iii) **Post-Post-Impact:** persistent lower level of polarisation, even months after impact.

T+50.2 days

T+58.3 days

T+66 days

65

60

45

50

Graykowski et al. (2023)

(+ Kareta et al. (2023), Lister et al. (2024)]

- Pre-Impact: typical polarisation phase angle dependence.
- Post-Impact: dramatic drop in polarisation after impact.
 - The ejected particles are smaller and/or brighter than those on the pre-impact surface.
- (iii) **Post-Post-Impact:** persistent lower level of polarisation, even months after impact.

T+50.2 days

Residual ejecta material remaining in the system.

T+58.3 days

T+66 davs

65

60

50

DART Impact

#1 Hypothesis: Dust "blanket"

#2 Hypothesis: Lingering dust cloud

5. New Observations

Pre-Impact (T-1.3 months to T-15 hrs)

α = 20**→**52°

The system is unperturbed.

Post-Impact (T+4 hrs to T+3 weeks)

α = 53**→**76°

Post-Post-Impact

(T+3 weeks to T+4 months)

 $\alpha = 76 \rightarrow 7^{\circ}$

New Observations [T+2 years]

 $\alpha = 4 \rightarrow 67^{\circ}$ and more to come

The system is characterised by a persistent dust cloud.

The cloud is mostly dissipated.

5. New Observations

Jack Contraction

DART Impact

#2 Hypothesis: Lingering dust cloud

6. Conclusions

(i) Pre-Impact: typical polarisation phase angle dependence.

(ii) **Post-Impact**: dramatic drop in polarisation after impact.

The ejected particles are smaller and/or brighter than those on the pre-impact surface.

(iii) **Post-Post-Impact:** persistent lower level of polarisation, even months after impact.

Residual ejecta material remaining in the system.

Penttilä et al. (2024), Modeling Linear Polarisation of Didymos-Dimorphos before and after the DART impact.

(iv) New Observations (T+2 years): polarisation has returned to pre-impact level.

No more/negligible residual material left in the system.

More observations until end of Nov., up to phase angle 70°