

Systematic issues in the photometry of MPC observations leading to erroneous size estimates

Debiasing astro-photometric observations with corrections using statistics (DePhOCUS)

Tobias Hoffmann, Marco Micheli, Juan Luis Cano, Maxime Devogèle, Davide Farnocchia, Petr Pravec, Peter Vereš, Björn Poppe

Tobias Hoffmann

→ THE EUROPEAN SPACE AGENCY

ESA ESOC

12/11/2024

ESA UNCLASSIFIED – For ESA Official Use Only

Motivation

- High photometric <u>errors</u> in MPC observations, ~0.4 mag in H-mag (Jurić et al., 2002)
 - Colour band conversion
 - Systematic measuring errors
- Challenging estimation of phase curve parameters, inaccurate <u>size</u> and other physical parameters
 - Characterization
 - Planetary Defence
- "MPC (and others) now attempt to address with observatory-dependent corrections [...]" (Vereš et al., 2015)

- Multi-band astro-photometry
- Varying measuring techniques

Intrinsic color offsets Observer-specific deviations Debiasing

systematic photometric errors

→ THE EUROPEAN SPACE AGENCY

Motivation

- High photometric <u>errors</u> in MPC observations, ~0.4 mag in H-mag (Jurić et al., 2002)
 - Colour band conversion
 - Systematic measuring errors
- Challenging estimation of phase curve parameters, inaccurate <u>size</u> and other physical parameters
 - Characterization
 - Planetary Defence
- "MPC (and others) now attempt to address with observatory-dependent corrections [...]" (Vereš et al., 2015)

- Multi-band astro-photometry
- Varying measuring techniques

Intrinsic color offsets Observer-specific deviations

Debiasing

systematic photometric errors

→ THE EUROPEAN SPACE AGENCY

Motivation

Method

Reference database

- Ondrejov NEO Photometric Program (Pravec et al., 1997, 2012)
 - Dataset with light- and phasecurves of NEA, Mars crossers and MBA
 - Observations from Ondrejov Observatory, La Silla and other collaborating stations
 - Including more than 500 asteroids
 - For our study: Prepublished database* as at 11/08/2023, 468 asteroids in total (in V-band)
 - H-G phase curve parameters (and errors), Model by Bowell et al. (1989)
 - Absolute magnitude *H* is corresponds to the mean light in Johnson V or R photometric system, calibrated with Landolt (1992) standard stars

 \rightarrow reduces photometric biases, especially due to rotation

Method

Design of the bias analysis system

Analysing photometric residuals with a list of objects with reliable H-G values

- Obtaining systematic biases for: color band (B), photometric catalog (C), observatory (O)
- Additionally: accounting each asteroid equally to reduce selection bias (a)

Bias analysis system – Color Band (B)

- Comparison of average color-band biases to current correction values
 - Modern bands (like Sloan or ATLAS): low deviation and previous corrections agree with our results
 - Majorly used bands (Johnsons-Cousins V, R and Gaia G-band): slight deviation, less accurate
 - Less typical bands (like B, I and H): high deviation, only few observations
 - Pan-STARRS w-band and unspecified band: large inconsistency
 - New corrections needed

General		Corrections		Debias results			
Band	Note	MPC	NEOCC	Debias aB	error	Obser- vations	Diff. to MPC
В	Johnson-Cousins	-0.80	-0.80	0.11	0.23	227	0.91
g	Sloan	-0.35	-0.28	-0.33	0.01	4.600	-0.02
с	ATLAS cyan	-0.05	-0.05	-0.02	0.01	18.980	0.03
V	Johnson-Cousins	0.00	0.00	0.08	0.02	63.520	30.0
w	Pan-STARRS	-0.13	0.16	0.11	0.01	25.582	0.24
r	Sloan	0.14	0.23	0.13	0.01	20.661	-0.01
R	Johnson-Cousins	0.40	0.40	0.28	0.02	52.887	-0.12
G	Gaia Broadband	0.28	0.28	0.15	0.02	102.697	-0.13
0	ATLAS orange	0.33	0.33	0.33	0.01	55.716	0.00
i	Sloan	0.32	0.39	0.33	0.01	5.178	0.01
Ι	Johnson-Cousins	0.80	0.80	0.25	0.08	137	-0.55
Z	Sloan	0.26	0.37	0.29	0.02	453	0.03
у	Pan-STARRS	0.32	0.36	0.34	0.02	202	0.02
Y	1.035 micron band	0.70	0.70	0.91	0.02	36	0.21
J	1.275 micron band	1.20	1.20	1.36	0.02	69	0.16
Н	1.662 micron band	1.40	1.40	1.81	0.02	20	0.41
К	2.159 micron band	1.70	1.70	1.83	0.03	39	0.13
-	No band specified	-0.80	-0.80	-0.04	0.02	50.399	0.76
u	unknown	2.50	-2.50	-2.44	0.05	20	0.06
С	"clear" formerly	0.40	0.40	0.35	0.02	976	-0.05

(Hoffmann et al., 2024)

Bias analysis system – Color Band (B)

- Comparison of average color-band biases to current correction values
 - Modern bands (like Sloan or ATLAS): low deviation and previous corrections agree with our results
 - Majorly used bands (Johnsons-Cousins V, R and Gaia G-band): slight deviation, less accurate
 - Less typical bands (like B, I and H): high deviation, only few observations
 - Pan-STARRS w-band and unspecified band: large inconsistency
 - New corrections needed

Bias analysis system – Band-Catalog (BC)

- Comparison of different catalog biases within a color band (average band bias = central line)
 - Significant difference among the different photometric catalogs

(Hoffmann et al., 2024)

Bias analysis system – Band-Catalog (BC)

- Comparison of different catalog biases within a color band (average band bias = central line)
 - Significant difference among the different photometric catalogs

(Hoffmann et al., 2024)

Bias analysis system – Band-Catalog-Observatory (BCO)

Comparison of different observatory biases within a band (average band bias = central line)

Bias analysis system – Band-Catalog-Observatory (BCO)

- Comparison of different **observatory biases** within a band (average band bias = central line)
 - Most surveys are consistent with respect to each other, low deviations

(Hoffmann et al., 2024)

→ THE EUROPEAN SPACE AGENCY

Bias analysis system – Band-Catalog-Observatory (BCO)

- Comparison of different observatory biases within a band (average band bias = central line)
 - Effects of observatories already calibrating their photometry for band offsets

Method

Design of correction algorithm

Basic idea:

- BCO results (band, catalog, observatory) if there is enough data for accurate correction
- BC results (band, catalog) if there is enough data for basic correction
- B results (band) if there is enough data for rough correction
- Previous NEOCC correction if there are no results available

What is "enough"?

- This decision is done by a statistical methods to select the most relevant rules (t-test)
- Iterative approach: Starting from NEOCC rules, expanding B, BC and then BCO corrections in cases when they are statistically significant (e.g., 90% p-level)

Method

Design of correction algorithm

➡ THE EUROPEAN SPACE AGENCY

Correction system – Prediction of model

- Idea: Do <u>calibration</u> on one part of reference data, <u>predict</u> the other part and <u>compare</u> to measurements
 - 394 out of 468 asteroids (~84%) used for calibration
 - 74 out of 468 asteroids (~16%) used for validation of prediction

Correction	В	BC	BCO	RMS / mag	Change			
None	0	0	0	0.4251	0.0%			
MPC	24	0	0	0.4321	+ 4.0%			
NEOCC	24	0	0	0.4244	- 0.4%			
NEOCC ^[1]	*17	0	0	0.3768	- 27.6%			
DePhOCUS								
p = 0	*20	159	2287	0.3720	- 30.3%			
<i>p</i> = 0.68	*17	90	701	0.3621	- 36.0%			
p = 0.90	*17	61	339	0.3613	- 36.4%			
p = 0.95	*16	53	241	0.3622	- 35.9%			
p = 0.99	*12	41	128	0.3691	- 31.8%			
[1] Used by NEOCC since 2023-09-28 (including aB results)								

- Debiasing has meaningful effect, major influence by color band, but also catalog and observatory
- Reduction in the deviations by about 36% compared to previous corrections
 - Assuming light curve effect/ photometric error boundary (0.25 mag)

(Hoffmann et al., 2024)

Additional to previous NEOCC correction

Correction system – Prediction of model

- Idea: Do <u>calibration</u> on one part of reference data, <u>predict</u> the other part and <u>compare</u> to measurements
 - 394 out of 468 asteroids (~84%) used for calibration
 - 74 out of 468 asteroids (~16%) used for validation of prediction

(Hoffmann et al., 2024)

- Additional advanced analysis to have a look at the influence of...
 - Apparent magnitude (SNR)
 - Apparent motion (effects of trailing)
 - Absolute magnitude (size of asteroid)
 - Galactic latitude (density of surrounding stars)
 - Astrometric residuals (measuring errors)
 - Evolution of time (long-term effects)
 - ... on the bias and accuracy of the measurements for large stations
- These might be important to understand possible issues/improvements of the new method

- Effect of the **apparent magnitude** on the bias of large stations; changes near the detection limit of observatory?
 - Creating density plots for each obscode-color combination

- Effect of the apparent motion as a measure for trailingon the bias and accuracy for large stations
 - Creating density plots for each obscode-color combination

- Effect of the time of observation on the bias of large stations to see if something changed over time
 - Creating density plots for each obscode-color combination

. . .

Future works and improvements

- Using larger dataset about physical properties / model parameters
- Improvement of G parameter estimation
- Including more recent models of absolute magnitude (e.g., Muinonen (2010), Penttilä (2016), Carry et al. (2024))
 - HG_1G_2 , HG_{12}^* and sHG_1G_2
 - Need for a (large) photometric reference database for these models
- Weighting the observations by the expected accuracy
- Making use of ADES format, using uncertainties in weighting
- Long-term investigation, more observations (and possible changes over time)

💳 🔜 📲 🚍 💳 🕂 📲 🔚 🔚 🔚 🔚 🔚 🔚 🔤 🛶 🕼 🕨 📲 👫 📲 🖬 👘 🗠 🖬

Community

- The presented analysis opens now new questions on the photometric observations of asteroids:
 - A. How should observers provide their photometry? How can specific pre-calibrations be indicated?
 - B. Should it be possible to submit dedicated photometry to the MPC?
 - C. Should MPC/JPL/NEOCC apply corrections for (past) measurements?
 - D. Is the V-band a suitable reference band for optical observations (anymore)? Alternative?
 - E. How can the confusion between 'band' and 'filter' be minimized?
 - F. Should there be campaigns focusing on the photometry of NEOs (comparable to timing-campaign)?

G. ...

→ THE EUROPEAN SPACE AGENCY

- Photometric observations of asteroids have systematic biases for band and catalog.
- Observations from different observatories varies strongly in accuracy and contain offsets.
- Statistically analysing observations allows the derivation of specific corrections.
- Applying multi-parameter corrections results in a significant reduction of errors.
- New debiasing leads to **better** photometric description and **asteroid size estimation**.
- More data and a long-term investigation is needed, other models should be considered, as well.
- Discussions on standardization of photometry calibrations in the community should be made.

■ ■ = = + ■ ■ = = ■ ■ ■ ■ ■ = = = ■ ◎ ▶ ■ ■ ■ ■ ■ ■ ■ ■ ■ ● → THE EUROPEAN SPACE AGENC

References

Main description of this work

Hoffmann, Tobias et al. (2024): Debiasing astro-photometric observations with corrections using statistics (DePhOCUS).
 Icarus 116366, DOI: <u>10.1016/j.icarus.2024.116366</u>

Additional

- Bowell, Edward et al. (1989): Application of photometric models to asteroids. Asteroids II, pp. 524-556.
- Carry, Benoit et al. (2024): Combined spin orientation and phase function of asteroids. A&A 687, A38.
- Jurić, Mario et al. (2002): Comparison of positions and magnitudes of asteroids observed in the sloan digital sky survey with those predicted for known asteroids. Astron. J., 124 (3), pp. 1776-1787.
- Muinonen, Karri et al. (2010): A three-parameter magnitude phase function for asteroids. Icarus 209.2, pp.542-555.
- Penttilä, Antti et al. (2016): H, G1, G2 photometric phase function extended to low-accuracy data. Planet. Space Sci., 123.
- Pravec, Petr et al. (1997): The Near-Earth Objects Follow-Up Program. Icarus 130.2, pp. 275-286.
- Pravec, Petr et al. (2012): Absolute magnitudes of asteroids and a revision of asteroid albedo estimates from WISE thermal observations. Icarus 221.1, pp. 365-387.
- Vereš, Peter et al. (2015): Absolute magnitudes and slope parameters for 250,000 asteroids observed by Pan-STARRS PS1
 Preliminary results. Icarus 261, pp.34-47.
- Williams, Gareth Vaughan (2013): Minor Planet Astrophotometry. Open University

26

Thank you for listening!

ESA UNCLASSIFIED - For ESA Official Use Only

Produced by

Tobias Hoffmann

Young Graduate Trainee

Science Missions Support Section (OPS-GFS)

Flight Dynamics Division

Directorate of Operations

European Space Agency