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• About 90% of the incoming solar radiation is emitted  
in the IR

• The risk of source confusion (stars, galaxies) is in the
mid-IR about 2 orders of magnitude lower then at 
visible 𝝀

• The high IR-VIS flux ratio and the reduced confusion
risk are especially advantageous for observing NEOs 
which are often viewed at large phase angles and close
to the Sun.

• Visible observations of irregularly-shaped NEOs at high 
phase angle also suffer from rotational variations of
the small, illuminated surface areas

• In contrast, thermal IR observations present a different scenario: small, fast-rotating
NEOs exhibit nearly isothermal surfaces with temperatures ranging from 300 to 400 K. 
Consequently, the likelihood of early detection is enhanced at IR wavelengths, especially
at large phase angles.

• Additionally, IR measurements provide valuable constraints on an object's size, albedo, 
and thermal characteristics indicative for the surface material strengths
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Why Infrared?



log10D = 3.1236 – 0.2HV – 0.5 log10pV

HV = 16.33 ± 0.3 mag



FD (@10 μm) =2.5 ± 0.25 mJy



HV = 16.33 ± 0.3 mag
FD (@10 μm) =2.5 ± 0.25 mJy



Size determination for MBAs (larger objects, limited phase angle range):
• H-mag only: factor 4-5 uncertainty in size
• IR detection, no H-mag:  ±20-30% via NEATM
• IR detection, with H-mag: ±10-20% via NEATM
• Multiple/multi-band detections of objects with known orbit and H-mag: ±10% 

via TPM techniques (if spin-shape solution available: ±5% )

Size determination for NEAs (small, fast(er) rotation, shape, large phase angles):
→NEA radiometric size determination easily possible (WISE, NEO Surveyor, 

NEOMIR, …), but
• Lower quality due to large changes in cross section (shape, aspect angle)
• No thermal model validation for objects at large (>90∘) phase angles
• Unknown surface roughness and thermal inertia effects (bare rock, porous 

rocks, fine/coarse grain regolith on low-g surface)
• Unknown temperature distribution for small, fast-rotating asteroids
• Thermal properties change for highly eccentric orbits



NEATM (Harris 1998) application: Ryugu
➢ Assuming a spherical shape model  and only day-

side emission is considered (using the absolute 
phase angle |𝛂|)

➢ T = [S (1 − A) cos(Θ)/(η ε σ)]1/4   where A is the Bond 
albedo, ε is the bolometric emissivity (assumed to
be 0.9), σ is the Stefan- Boltzmann constant, S is
the solar insolation at the distance of the object, Θ 
is the angle away from the sub-solar point, and η is
the beaming parameter.

➢ The reflected sunlight (at zero phase angle) is
determined by the visible geometric albedo pV . It is
connected to the Bond albedo A through the phase
integral q, as A = q pV

➢ q can be calculated from the slope parameter G via 
q = 0.290 + 0.684 G (Bowell et al. 1989)

Application to all available remote observations from Spitzer-IRAC 
(ch1,ch2)/-IRS, WISE-W1/-W2, Subaru-COMICS, AKARI-IRC, Herschel-PACS



Determination of the beaming parameter η (assuming a 
spherical shape model with a D= 896 m and pV = 0.045 ± 0.002)

Using 𝛂 and not |𝛂| !!!

Data from Müller et al. (2017) 
+ new unpublished data

NEATM Beaming phase function



NEATM Beaming phase function

Delbo (2004)
η = 0.92(±0.07)+0.011(±0.002)𝜶 



Mainzer et al. (2011), ApJ 743
η = 0.76(±0.01)+0.010𝜶 
(313 NEAs with fitted η, cryo-WISE)

NEATM Beaming phase function



Alí-Lagoa & Delbo (2017)
η = 1.2 ± 0.2 (400 Mars crossers)

NEATM Beaming phase function



NEATM results: Ryugu

• Using NEATM with η = (1.384 ± 0.005) + (0.0020 ± 0.0002)α  works very well and 
allows to reproduce Ryugu’s size and albedo (NOTE: η calculation requires signed α!)

• This NEATM solution explains the available thermal measurements (within their 
absolute flux errors) over all phase angles (-90 ∘ … +90 ∘), wavelengths (3.3 to 70 𝜇m), 
rotational phases or heliocentric distances (0.98 … 1.42 au), the  χ2

reduced = 1.2!
• The NEATM η slope is a strong indication for a retro-grade rotator
• The η slope is also indicative of a thermal inertia close to 300 tiu (assuming a rotation 

period of 7.6 hours and an equator-on viewing geometry)
• Published η-solutions are not working very well for Ryugu (on only for specific phase-

angle ranges and wavelengths)

• But η is not only phase-angle dependent (with the slope depending on the object’s 
thermal and rotation properties), it also changes with wavelengths and heliocentric 
distance (for the same object!)



• A rough surface model is assumed for each patch (considering only very small segments)
• The effect of heat conduction and surface roughness of the small segment is modelled

and the result scaled to the entire patch
• Each small segment of a surface patch is divided into a large number of surface elements
• The roughness is simulated by either considering a hemispherical crater on otherwise

flat surface, or by assuming a Gaussian random rough surface (see below)
• The Sun illuminates the segment and its surface elements and moves across the sky as

the asteroid revolves around its axis.
• Due to the surface roughness, some elements shadow other surface elements which is

taken into account
• Each element is heated by the Sun and by visual light scattered from neighbouring

elements.
• Heat is exchanged with the interior through heat conduction, assuming the elements to

be 1-D slabs isolated from neighbouring surface elements
• For temperature calculations the bolometric emissivity εbolo is relevant (integral of the 

spectral emissivity weighted by the solar spectrum)
• The (disk-integrated) flux (or emittance)  is calculated by integrating over all 

temperatures and by considering the hemispherical spectral emissivity εspec at a given 
wavelengths (depends on T4!)

TPM application: Ryugu
(Lagerros 1996, 1997, 1998; Müller & Lagerros 1998, 2002, all in A&A)



Using the high-
resolution shape 
model and the 
published thermal 
inertia for Ryugu

Data from Müller et al. (2017) 
+ new unpublished data

TPM roughness effects f(𝜶)



Using the high-
resolution shape 
model and the 
published thermal 
inertia for Ryugu

TPM roughness effects f(𝜶)



Clear indication of strong 
surface roughness

Reflected 
light regime See also Davidsson & Rickman (2014); 

Davidsson et al. (2015).

TPM roughness effects f(𝝀)



TIR image from Okada+20 TPM prediction (Γ=225)

Using the asteroid thermophysical model code by Lagerros (1996, 1997, 1998) 
Müller & Lagerros (1998, 2002, all in A&A), no surface roughness added

TPM roughness effects



TIR image from Okada+20 TPM prediction (Γ=225, rms 47∘)

Using the asteroid thermophysical model code by Lagerros (1996, 1997, 1998) 
Müller & Lagerros (1998, 2002, all in A&A), adding surface roughness 
(hemispherical craters on otherwise flat surface)

TPM roughness effects



TIR image from Okada+20 TPM prediction (Γ=225, rms 40∘)

Using the asteroid thermophysical model code by Lagerros (1996, 1997, 1998) 
Müller & Lagerros (1998, 2002, all in A&A), adding surface roughness       
(assuming Gaussian random rough surface)

TPM roughness effects



• TPM solution (εbolo ~0.98, TI = 300-400 tiu, roughness: 30-50∘ rms of surface 
slopes) explains the remote data very well, including before/after opposition 
effects,  short-wavelength data, thermal lightcurves, amplitudes, absolute 
fluxes, … AND  allows to explains the surface temperature  distribution (TIR 
images) in a qualitative way

• Roughness modeling (hemispherical craters or Gaussian random surfaces) is 
crucial, but results, for exactly the same rms of surface slopes, are not 
identical

• Thermal inertia as a function of temperature (or rhelio) is noticeable for Ryugu 
in-situ data

TPM results: Ryugu



Chelyabinsk progenitor (ChPG) orbit 
(study in the context of NEOMIR project)

• Based on Popova et al. (2013): “Chelyabinsk Airburst, Damage Assessment, Meteorite 
Recovery, and Characterization“, Science 342, 6162

• Orbital elements: a=1.76 (±0.16) au, e=0.581 (±0.018), i=4.93∘(±0.48 ∘), q=0.739 
(±0.020) au, Tp=2012-12-31.9 (±2.0); Impact: 2013-02-15 03:20 UTC

• 20-m size assumption (→ H=27.4/26.2/25.7 mag for pV=0.05/0.15/0.25)

Questions:
• What’s  the best place to observe (L1,L2,L4,L5, Earth)?  → L1 
• Which wavelengths and why? → mid IR (8-12 μm) produces highes SNR
• Is the background a problem? → yes, certainly at solar elongations <60∘

• Is the high apparent motion a problem? → yes, in the days before Earth encounter
• What’s needed to detect (SNR >5) the ChPG as early as possible? → close Sun-proximity 

observations (down to solar elongation of about 20∘); fast detector readout (to avoid 
saturation) and synthetic tracking techniques (to take advantage of full array-crossing times)

• Where are the problems in the SNR estimates? → NEA model calculations



Which is the best place to observe? → L1

   

         

  

  

NEOMIR & 
NEO SurveyorSolar elongations (from L1):

• Mercury: up to 27.7∘

• Venus: up to 47.0∘

• Earth: 180∘ (±0.2∘)
• Moon: 164∘…180∘

Sun-Earth Lagrange points



   

         

  

  

NEOMIR & 
NEO SurveyorSolar elongations (from L1):

• Mercury: up to 27.7∘

• Venus: up to 47.0∘

• Earth: 180∘ (±0.2∘)
• Moon: 164∘…180∘

ChPG
Earth

Chelyabinsk-progenitor (ChPG) orbit before impact

Sun-Earth Lagrange points





19.9 days 2.2 days



Murdock & Price (1985), 
rocket experiment, Fig. 12: 
F𝝀 as a function of solar 
elongation angle at 10.9 𝜇m 
(squares) and 20.9 𝜇m 
(triangles) in ecliptic plane.

70 ∘

30 ∘

10.9 𝜇m

Values from the JWST ETC at 
10 𝜇m in the ecliptic plane:
 (𝜆 -𝜆Sun)ecl

.  SurfBrightness
 85 ∘.      40 MJy/sr
 90 ∘ .      37 MJy/sr
100 ∘ .      31 MJy/sr
120 ∘ .      25 MJy/sr

x
xx

x

Another tool available at:
https://irsa.ipac.Caltech.edu/
applications/BackgroundModel 

120 ∘

20.9 𝜇m
~a factor of 
10 difference!

Is the IR background a problem? → Yes

https://irsa.ipac.caltech.edu/applications/BackgroundModel
https://irsa.ipac.caltech.edu/applications/BackgroundModel


IR Background along apparent trajectory

High background requires short 
readout times to avoid saturation!



5”/min. threshold



Untested thermal model regime

Tested/validated thermal model regime



Different model predictions at 8 μm



Pre-impact detection of Chelyabinsk-type objects
in the thermal infrared

A pre-impact detection (and size estimate) of a Chelyabinsk-type 
object is possible: 
• with a 50 cm telescope, large FOV, passively cooled detector
• from L1, at 8-10 μm, 8-10 days before impact (while the object is

still fainter than mag 30!)
• but requires observations down to 20∘ solar elongation, at very

high background, produces high data rates and needs synthetic
tracking techniques (to take advantage of full array-crossing times)!

• Large uncertainties in the predictions remain due to unknowns in 
the asteroid IR models!



Difficulty to model IR emission of small asteroids at high phase angles

• The thermal model predictions for (small, fast-rotating?, monolithic?, porous?) NEOs is very 
difficult and uncertain, especially for high phase angles (> 90 ∘)

• There is clearly a lack of IR measurements of asteroids seen under large phase angles!
• NEOs below ~200 m in size are rotating faster (Pravec et al. 2008): → FRM?
• However, NEATM (with beaming parameters η in the range 1-1.5) seem to work for about 50 NEOs 

with sizes between ~8 to ~100 m (Mainzer et al. 2014): → NEATM?
• The Yarkovsky drift of a rapidly rotating small asteroid points to an unexpectedly low thermal 

inertia, indicative for a highly porous or cracked surface (Petkovic et al. 2021; Fenucci et al. 2023): 
→ TPM?

• There is also the vector alignment of asteroid spins by thermal torques (YORP), see work by 
Vokrouhlicky et al. (2003): → TPM?

• Our baseline model: TPM with D= 20 m, pV = 0.15, 𝛤=300 tiu, roughness rms = 0.5, Psid = 6 min, 
𝛽ecl = +45 ∘, 𝜀=0.9 (fluxes between NEATM with η=1.0 or 1.5 and FRM for wide phase angle ranges)



NEOSurveyor visibility zone:
 45∘ ≤ (𝜆-𝜆∘) ≤ 125∘

-41.9 ∘ ≤  𝛽ecl ≤  +41.9 ∘

Detectability: about 1 day 16 h before impact
 8 h on Feb-13 and 2 h on Feb-14



NEOMIR visibility zone: 
30∘ ≤ (S-O-T) ≤ 70∘

[-70 ∘ ≤ 𝛽ecl ≤ +70 ∘]

Detectability: about 2 days 6 h before impact
for about 24 hours



Different model predictions at 8 μm
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