
1
© 2025 The MathWorks, Inc.

FPGA Meets Systems Engineering
Integrating Approaches for Space Applications

Stephan van Beek

European Technical Specialist

SoC/FPGA Design Flows

+ ➔

2

What is the difficulty?

.

Mars Climate Orbiter
Image credit: NASA/JPL

The biggest problem was

not the unit mismatch itself,

but the failure to detect and

correct this mistake

3

Challenges – complexity

1997 ….. 2008 ….. 2025

1 FPGA engineer,

1 board with 4 FPGAs

o Applications: logic interfaces,

very simple algorithms

o Xilinx XC4000E resources

(DSPs 0, Logic Cells 85K,

BRAM)

o Schematic entry ➔

hybrid schematic entry + VHDL

Team of engineers (algorithm, architect,

FPGA, software) for 1 board with 1 SoC

o Applications: very complex algorithms

(artificial intelligence, wireless, signal

processing, vision, motor/power, etc.)

o AMD Versal resources (Logic Cells 9M,

DSP engines 11K, AI engines 400,

BRAM, URAM, ARM)

o Will this be the next evolution? ➔

MBD (SoC/FPGA) + MBSE??

Multiple FPGA engineers,

1 board with 1 FPGA

o Applications:

more complex algorithms

o Xilinx Virtex-5 resources

(DSPs 1K, Logic Cells 330K,

BRAM, Embedded Processor)

o VHDL ➔ MBD (FPGA)

4

How do you create your FPGA architectural block diagrams?

Webinar Oct 29th 2024, An Expert’s Guide to Using MATLAB

and Simulink for FPGA and SoC Design, 385 attendees

0%

10%

20%

30%

40%

50%

60%

Visio Powerpoint System Composer SysML MBSE tool Napkin No tool We don't create an
FPGA/SoC

architecture diagram

Might be

okay for simple

architectures

Best for

complex

architectures

5

Adam Taylor is on a good path here ……

6

Challenges – complexity ➔ needs

▪ Top-down design processes

– Functional decomposition

– No simulation needed early, but ….. later you will need simulation

▪ Go Beyond Textual Requirements

– Use expressiveness of requirement models and trade studies

– Use views to put stakeholder discussions in context

▪ Validate compliance to requirements through simulation

▪ Deployment

– Generate RTL code from architecture + design models

7

Model-Based Systems Engineering + Model-Based Design

T
o

p
-d

o
w

n

Requirements

Architecture

Design
Integrate MBD with

MBSE

B
o

tto
m

-u
p

Custom

Profiles

8

Requirements: Textual, Traceability, Interfaces, Interactions

Establish traceability between

architecture & design and textual requirements

Define and visualize interfaces using

Internal Block Diagrams (IBD)

Define interface behaviors using

Sequence Diagrams (SD)

9

Validate Systems by Re-Using Requirements Models

10

Validate System Behavior and Robustness with Fault Injection

Non-intrusive way

to define and inject

faults

Analyze impact of

faults using simulation

almostError

Phase current

w/fault

11

Generate HDL code from System Architecture incl Detailed Models

Interfaces in-sync

with detailed design

Generate traceable/

readable RTL code

Validate architecture and

design before deployment

12

Re-use System Architecture and Design Models for RTL Verification

& Validation

assessinput

Excel file

(input)

Variants to select

Model-in-the-Loop or

RTL-in-the-Loop

13

Integration with other IPs or Software Components

Direct integration with FPGA

architecture and design

Choose target platform and

reference design

Map interfaces to AXI or external

interfaces

14

Continuous Integration for Model-Based Design

Continuous Integration: CI/CD Automation for Model-Based Design (support package)

CI/CD Automation for Simulink Check (reference book)

https://www.mathworks.com/products/ci-cd-automation.html
https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/hardware-support/files/ci-cd-automation-simulink-check-reference-book.pdf

15

Concluding remark

+ ➔

Architecture Design

	Slide 1
	Slide 2: What is the difficulty?
	Slide 3: Challenges – complexity
	Slide 4: How do you create your FPGA architectural block diagrams?
	Slide 5: Adam Taylor is on a good path here ……
	Slide 6: Challenges – complexity needs
	Slide 7: Model-Based Systems Engineering + Model-Based Design
	Slide 8: Requirements: Textual, Traceability, Interfaces, Interactions
	Slide 9: Validate Systems by Re-Using Requirements Models
	Slide 10: Validate System Behavior and Robustness with Fault Injection
	Slide 11: Generate HDL code from System Architecture incl Detailed Models
	Slide 12: Re-use System Architecture and Design Models for RTL Verification & Validation
	Slide 13: Integration with other IPs or Software Components
	Slide 14: Continuous Integration for Model-Based Design
	Slide 15: Concluding remark

