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What is the difficulty?

.

Mars Climate Orbiter
Image credit: NASA/JPL

The biggest problem was 

not the unit mismatch itself, 

but the failure to detect and 

correct this mistake
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Challenges – complexity

1997 ….. 2008 ….. 2025

1 FPGA engineer, 

1 board with 4 FPGAs

o Applications: logic interfaces, 

very simple algorithms

o Xilinx XC4000E resources 

(DSPs 0, Logic Cells 85K, 

BRAM)

o Schematic entry ➔ 

hybrid schematic entry + VHDL

Team of engineers (algorithm, architect, 

FPGA, software) for 1 board with 1 SoC

o Applications: very complex algorithms 

(artificial intelligence, wireless, signal 

processing, vision, motor/power, etc.)

o AMD Versal resources (Logic Cells 9M, 

DSP engines 11K, AI engines 400, 

BRAM, URAM, ARM)

o Will this be the next evolution? ➔ 

MBD (SoC/FPGA) + MBSE??

Multiple FPGA engineers, 

1 board with 1 FPGA

o Applications: 

more complex algorithms

o Xilinx Virtex-5 resources 

(DSPs 1K, Logic Cells 330K, 

BRAM, Embedded Processor)

o VHDL ➔ MBD (FPGA)
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How do you create your FPGA architectural block diagrams?

Webinar Oct 29th 2024, An Expert’s Guide to Using MATLAB 

and Simulink for FPGA and SoC Design, 385 attendees
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Visio Powerpoint System Composer SysML MBSE tool Napkin No tool We don't create an
FPGA/SoC

architecture diagram

Might be 

okay for simple

architectures

Best for 

complex 

architectures
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Adam Taylor is on a good path here ……
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Challenges – complexity ➔ needs

▪ Top-down design processes

– Functional decomposition

– No simulation needed early, but ….. later you will need simulation

▪ Go Beyond Textual Requirements

– Use expressiveness of requirement models and trade studies

– Use views to put stakeholder discussions in context

▪ Validate compliance to requirements through simulation

▪ Deployment

– Generate RTL code from architecture + design models
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Model-Based Systems Engineering + Model-Based Design
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Requirements: Textual, Traceability, Interfaces, Interactions

Establish traceability between 

architecture & design and textual requirements

Define and visualize interfaces using 

Internal Block Diagrams (IBD)

Define interface behaviors using 

Sequence Diagrams (SD)
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Validate Systems by Re-Using Requirements Models
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Validate System Behavior and Robustness with Fault Injection

Non-intrusive way 

to define and inject 

faults

Analyze impact of 

faults using simulation

almostError

Phase current 

w/fault
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Generate HDL code from System Architecture incl Detailed Models

Interfaces in-sync 

with detailed design

Generate traceable/ 

readable RTL code

Validate architecture and 

design before deployment
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Re-use System Architecture and Design Models for RTL Verification 

& Validation

assessinput

Excel file 

(input)

Variants to select 

Model-in-the-Loop or 

RTL-in-the-Loop
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Integration with other IPs or Software Components

Direct integration with FPGA 

architecture and design

Choose target platform and 

reference design

Map interfaces to AXI or external 

interfaces
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Continuous Integration for Model-Based Design

Continuous Integration: CI/CD Automation for Model-Based Design (support package)

CI/CD Automation for Simulink Check (reference book)

https://www.mathworks.com/products/ci-cd-automation.html
https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/hardware-support/files/ci-cd-automation-simulink-check-reference-book.pdf
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Concluding remark

+ ➔

Architecture Design
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