AMD

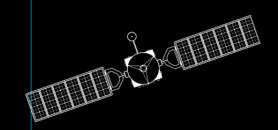
AMD XQR Versal[™] Adaptive SoCs Enable Next-Generation Signal Processing and AI in Space

Ken O'Neill Space Systems Architect koneill@amd.com Paul Lynch Customer Quality Engineer paul.lynch@amd.com

SEFUW March 2025

Agenda

- XQR Kintex[™] UltraScale[™] and Virtex[™]5-QVFPGA update
- XQR Versal[™] Adaptive SoC introduction and overview
 - Architectural features
 - Product portfolio
 - Qualification and screening
 - Power and thermal considerations
 - Radiation
 - Partners and ecosystem
 - Reference designs
- Q&A


AMD in Aerospace & Defense Applications

30 Years Heritage

Space

- Space-grade Portfolio
- SEU Mitigation
- Payload Processing
- Y, V, and B flow, QML
- On-orbit Reconfiguration

Security Solutions

- Anti-Tamper (AT)
- Information Assurance (IA)
- HW / SW Assurance

Intelligence, Surveillance & Reconnaissance (ISR)

- Signal Processing
- Multi-channel SAR
- Connectivity

Avionics

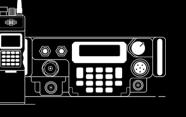
DO-254 and DO-178

Certifiable Solutions

Advanced Tool Flows

SEU Mitigation

STAP Processing


Covering Ground, Air, and **Space Applications**

Extending with Machine Learning

Communications

- Signal Processing
- Low Power Solutions
- Waveform IP & Analysis
- LTE UE with P2P

Exciting Recent Activity!

Strong Adoption & Heritage

Artemis / Orion NASA November 2022 Virtex-5 (SIRF) FPGAs On-Board Computing JUICE European Space Agency June 2023 Virtex-4 Series FPGAs Science Instrument Chemical Composition of Jupiter Icy Moons Heinrich Hertz DLR German Space Agency July 2023 Virtex-5 (SIRF) FPGAs Reconfigurable On-Board Processing

Chandrayaan 3 ISRO Indian Space Agency July 2023 Virtex-5 (SIRF) and Virtex-4 Series FPGAs Science Instruments PWSA Tranche 0 SDA Feb 2024 Kintex[™] Ultrascale[™] FPGAs Imaging Low Earth Orbit Constellations Commercial and USG Launches in 2023 and 2024 Versal[™] Adaptive SoCs Communications

XQR Kintex[™] Ultrascale[™] FPGA and XQR Virtex-5QV FPGA Update

XQR Kintex[™] UltraScale[™] and Virtex-5QV Product Table

Resources		XQR4V	,		XQR5V	XQRKU060
Logic Cells	55,296	56,880	142,128	200,448	131,072	725,550
CLB Flip-Flops	49,152	50,560	126,336	178,176	81,920	663,360
Distributed RAM (Kbits)	384	395	987	1,392	1,580	9,180
Total Block RAM (Kbits)	5,760	4,176	9,936	6,048	10,728	38Mb
Max Distributed RAM (Kb)						9,180
Block RAM/FIFO with ECC (36Kb each)						1,080
Digital Clock Manager (DCM)	8	12	20	12	12	
Phase Lock Loop (PLL)					6	12 CMT (1MMCM, 2 PLLs)
DSP Slices	512	128	192	96	320	2,760
System Monitor						1
PCIe Gen1/2/3						3
Processors			Hz PPC405 Cores			MicroBlaze (IP)
10/100/1000 EMACs		4	4		6	
Multi-Gigabit Transceivers (MGT)					18 @4.25Gbps	32 @12.5 Gbps
TID (krad)	300	300	300	300	1,000	120
SEL Immunity (LETs) MeV-cm2/mg	>125	>125	>125	>125	>125	80
					Radiation Hardened By	
		iation Toler	ant (RT)		Design (RHBD)	Radiation Tolerant (RT)
	V-Flow (QML-V Equivalent)				B-Flow (QML-Q Equivalent)	B-Flow (QML-Q Equivalent)
					V-Flow (QML-V Equivalent)	Y-Flow (QML-Y Equivalent)
Package Size (mm)	35 x 35 mm		40 x 40 mm		45 x 45 mm	40 x 40 mm
Pin Counts	1140	1144	1509		1752	1509
Max. IO Count	640	576	768	960	840	620
		Last Time	Buy		SHIPPING	SHIPPING

XQR Kintex[™] UltraScale[™] FPGA Qualification - Completed!

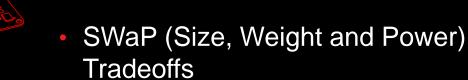
- The XQRKU060 qualification was completed on schedule
- 3 qualification lots tested and meet requirements per MIL-PRF-38535
- Qualification report available
 - Group A (TM5005)
 - Group B (MIL-STD-883)
 - Group C (TM1005 2000 Hours) + Group C (TM1005 Aug. 2021 Surpassed 10K hours for New Product Introduction)
 - HTS (TM 1008); HAST (JESD22-A110); Temp Cycle (TM1010 Cond C)
 - Group D (Sub Groups 1,3,4,5)
 - Group E (TM 1019, Sub Group2)
- QML-Y Certification Plans for XQRKU060
 - AMD pursuing certification with DLA, NASA/JPL and Aerospace Corporation
- Additional Reliability Monitors
 - Board Level Reliability completed
 - 1000 Temp cycles (-55°C to 100°C, 10°C/min, 15min dwell time) PASSED

XQRKU060 Xilinx Class B, Class Y **PASSED** Qualification, Shipments since Sept 2020 XQR Versal[™] Adaptive SoCs for Space Applications

Space Industry Market Challenges & Requirements

- Downlink Bandwidth is limited
- Fast time to market
 - Platform Concept for reuse on multiple missions

- Low Latency and High Bandwidth
 - Seamless and reliable connectivity for broadband communications


Machine Learning in orbit

- Need for capability to process on board a satellite vs ground station
 - Reduce Development Time to launch (2-3 years vs. 5-6 years)
 - Process hundreds of Gbps data streams in real time

- Flexible System Architecture
 - Change algorithms "on the fly"
- Reliable components for long mission life, extreme environments

Example Applications for AMD Versal[™] Adaptive SoCs

Communications Constellations

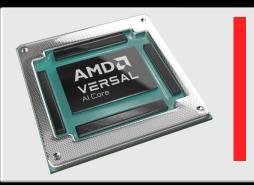
- Broadband
 Internet
- Direct-to-Device
- Inter-satellite Crosslinks

Remote Sensing Payloads

- Hyperspectral Cameras
- Synthetic Aperture Radar
- Scientific Instruments

Navigation and Guidance

- GPS / GNSS
- Entry/Descent/Landing
- Autonomous Navigation
- Avionics


Signal Processing, HW/SW Reconfigurable, Robust Package, Space Grade Tested, On Orbit Flexibility

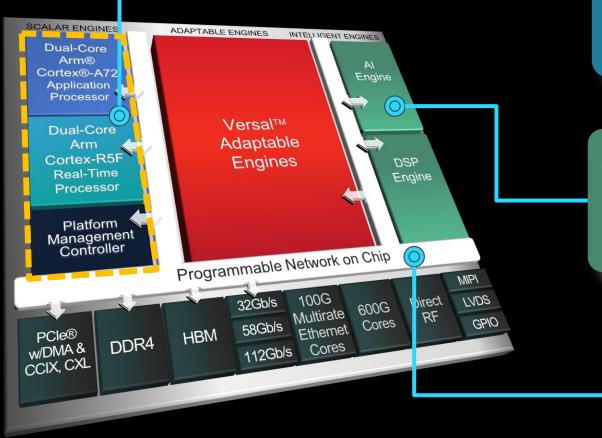
XQR Versal[™] Adaptive SoC

VERSAL	

First 7nm Adaptive SoC for Space Applications

- AI Core and AI Edge family members with Scalar, Intelligent and Adaptable Engines (ARM[®] CPUs, AI Engines & Prog. Logic)
- Innovative silicon design for SEU mitigation (> 50 patents)
- True on-orbit reconfiguration with unlimited programming cycles

Ruggedized Organic BGA


- AI Core 45mm x 45mm, AI Edge 23mm x 23mm
- Lidless with stiffener ring for added thermal mitigation capabilities
- Footprint compatible with commercial packages

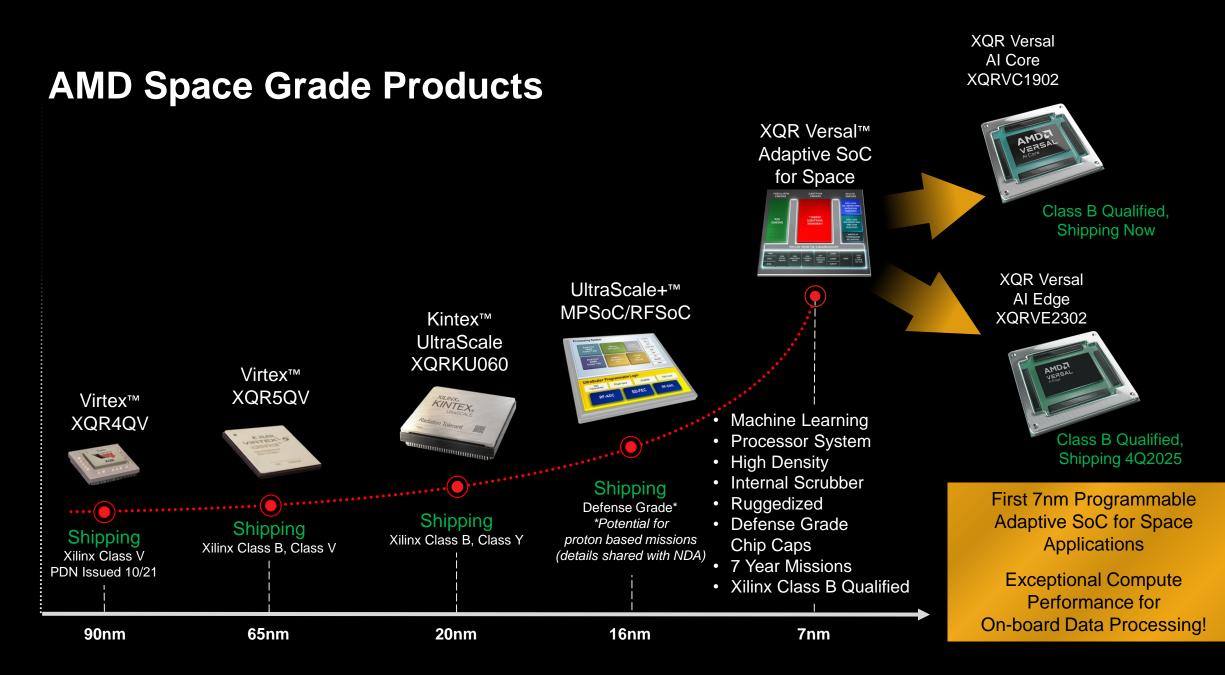
Production Space Test Flow

- Qualified and screened to MIL-PRF-38535 Class B, modified for organic packages
- Up to 7-year mission duration today with Class B
- Evaluating package enhancements for 15-year missions and class Y qualification

Novel Features for Space in Versal[™] Adaptive SoCs

Processor System

- Dual A72 application processor
- Dual R5F real-time processor with lock-step mode
- Two triple-redundant hardwired MicroBlaze[™] processors host XilSEM configuration-memory SEU mitigation

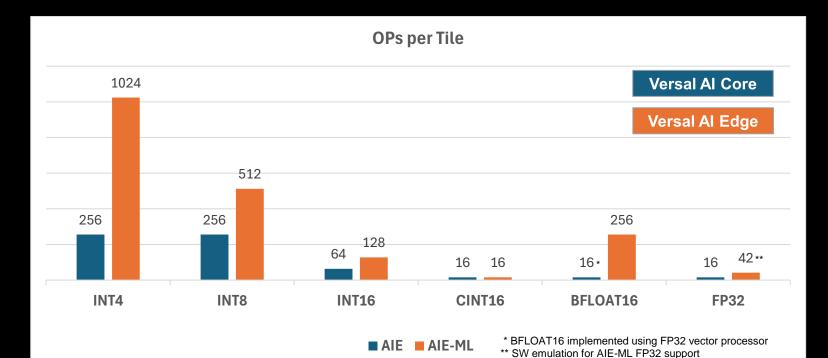

Al Engines

- SIMD vector processing
- Efficient complex matrix multiplication for RF processing
- Broad data-type support for AI inferencing

Network on Chip

- High bandwidth interconnect
- Reduces routing congestion
- Improves utilization

XQR Versal[™] Adaptive SoC Product Portfolio


XQR Versal[™] Adaptive SoC for Space Product Table

		XQRVC1902-1MSBVSRA2197 (AI Core)	XQRVE2302-1MSBSSRA784 (AI Edge)	
	AI Engine Tiles	400 (AIE)	34 (AIE-ML)	
Intelligent Engines	Al Engine Data Memory (Mb)	100	17	
intenigent Engines	AI-ML Shared Memory (Mb)	-	68	
	DSP Engines	1,968	464	
	System Logic Cells (K)	1,968	329	
Adaptable Engines	6-Input LUTs	899,840	150,272	
Adaptable Eligilies	NoC Master/NoC Slave Ports	28	5	
	Distributed RAM (Mb)	27	4.6	
	Total Block RAM (Mb)	34	5.4	
	UltraRAM (Mb)	130	43.6	
	Accelerator RAM (Mb)	-	32	
Memory	Total PL Memory (Mb)	191	86	
	DDR Memory Controllers	4	1	
	DDR Bus Width	256	64	
	Application Processing Unit	Dual-core Arm [®] Cortex [®] -A72, 48KB/32KB L1 Cache w/ECC 1 MB L2 Cache w/ECC		
Scalar Engines	Real-time Processing Unit	Dual-core Arm Cortex-R5F, 32KB/32KB L1 Cache, and 256KB TCM w/ECC		
	Memory	256KB On-Chip Memory w/ECC		
	Connectivity	Ethernet (x2); UART (x2); CAN-FD	(x2) USB 2.0 (x1); SPI (x2); I2C (x2)	
Serial Transceivers	GTx Transceivers	44 GTY (26.5625 Gb/s)	8 GTYP (26.5625 Gb/s)	
	CCIX & PCIe [®] w/DMA (CPM)	1 x Gen4x8, CCIX	-	
Integrated Protocol IP	PCI Express	4 x Gen4x8	1 x Gen4x8	
	Multirate Ethernet MAC	4	1	
	Platform Management Controller	Boot, Security, Safety, Monitoring, High-Speed Debug, SEU Mitigation (XilSEM)		
Package	Ruggedized Organic BGA	VSRA2197, 45mm x 45mm, 0.92mm pitch	SSRA784, 23mm x 23mm, 0.8mm pitch	
I/O		648 XPIO, 44 HDIO, 78 MIO, 44 GTY	216 XPIO, 22 HDIO, 78 MIO, 8 GTYP	
Radiation Single Event Effects (SEE)	Proton and Heavy-Ion SEE Testing			

XQRVC1902 Class B qualification completed, product shipping now XQRVE2302 Class B qualification completed, product shipping 4Q2025

XQRVE2302 Versal[™] AI Edge Adaptive SoC

- Versal AI Edge adaptive SoC XQRVE2302 now qualified to B flow
 - Significantly lower power consumption than XQRVC1902
 - Significantly less board space than XQRVC1902
 - Second generation AI engines ("AIE-ML") have increased throughput, optimized for AI inferencing
 - Qualification completed, product shipping 4Q2025

XQR Versal[™] Adaptive SoC Packaging, Qualification and Screening

Product Grade Comparison: UltraScale Architecture & Newer

Product-Grade	Designation	Temp-Grade	Temp Range (Tj)	Major Differences & Notes	Key Work Elements
Commercial-Grade	XC	Extended-Temp	E: 0 to +100C	ROHS (internally and BGA)	• Pass process and device qual
Commercial-Grade	λŪ	Industrial-Temp	I: -40 to +100C	 "XQ-Lite" avail. w/ Sn/Pb BGA (only avail. in I-temp UltraScale+ & Versal) 	 Base process and device qual
Automotive-Grade		Industrial-Temp	I: -40 to +100C	ROHSAEC-Q100 Qualification	Si Qualification Testing
	ХА	Q: -40 to +125C	 Full Mask Set, BOM + Site Control PPAP Documentation Up to Q temp range 	 Si High Temperature Characterization High Temp Test Programs 	
		Industrial-Temp	I: -40 to +100C	 Ruggedized Packages Full Mitigation of Tin Whiskering Sn/Pb BGA MIL-STD-883 Subset (Group D) 	 Si Characterization Package Design Package Qualification
Defense-Grade	XQ Military-Temp M: -55 to +125C · MIL-STD-883 Subset (Group D) · Fully Tested at Temperature Extremes · Mask set Control · Anti-tamper Features · Extended Lifetime availability	 Test Programs Q & M Speed Files IA / AT Evaluated 			
Space-Grade	XQR	Military-Temp	M: -55 to +125C	 Includes all XQ features plus: Radiation Test Reports Ceramic Packaging (UltraScale) Burn-in, Temp & Humidity qualification Groups A-E Qualification B or Y Flow Screening 	 Includes all XQ features plus: Radiation Testing Additional Si Screening Additional Group Testing Additional Test Programs M Speed Files

AMD XQR Construction Comparison (Ceramic vs. Organic)

Feature	Attribute	XQRKU060-CNA1509	XQRVC1902-VSRA2197	
Qualification Level	Class	B and Y	В	
	Package Type	Ceramic Column Grid Array	Organic Ball Grid Array	
	Body Size	40x40 mm sq.	45x45mm	
Package	Height	8.53 mm	3.8mm	
ruckage	Pitch	1.0 mm	0.92mm	
	Array	39x39	47x47	
	Corner Depopulation	:	3	
	Supplier	SF		
C4 Bump	C4 Material	Eutectic, 63Sn37Pb	Copper pillar with SnAg solder	
	Pitch	180 um	130um	
	Material	Ceramic (Alumina)	Organic	
	Thickness	4.35 mm	1.45mm	
	Substrate Metal Layers	37 layers	16 layers	
Substrate	I/O, Vcc, Vss Trace Metallization	Tungsten (W)	Copper	
	Via Metallization	Molybdenum (Mo)	Copper	
	C4 Pads	E-Less Ni/Au	Sn/Cu SOP	
	Substrate LGA Pads	E-Less Ni/Au	SAC305 SOP	
	Supplier	Kyocera	SPIL	
	Chip Capacitors	Mil screened	Commercial	
Assembly	Heatspreader Design	4 corner	Stiffener	
Assembly	Heatspreader Material	Ni plated AlSiC	Stainless Steel	
	Underfill	Underfill B		
	Thermal Interface Material (TIM)	TIM A		
Column/BGA Ball	Supplier	6 Sigma	SPIL	
	Material	80Pb/20Sn	63Sn/37Pb	
COULTIN/DGA Dall	Height	2.20 mm	0.5mm	
	Diameter	0.51 mm	0.64mm	

- Organic substrate advantages
- Allows high speed performance
- Higher density routing reduces substrate layers – reliability benefits
- Lighter, thinner than ceramic substrates
- Easier handling than column grid arrays
- Aligned with future requirements

AMD Versal[™] XQR (Class B) Package Attributes

• Devices are similar except for the size

	Item	Versal for Space 2.0 / Class B		
	Device	XQRVC1902-	XQRVE2302-	
		1MSBVSRA2197	1MSBSSRA784	
	Body Size	45 x 45mm	23 x 23mm	
line	Die Size	25.8 x 17.8mm	12.8 x 9.3mm	
Outline	Overall Package Height	3.8mm	3.62mm	
Ĵ	BGA Ball Pitch	0.92mm	0.8mm	
ate	Туре	Org	anic	
Substrate	Thickness	1.45mm	1.37mm	
Sul	Layers	16	14	
	Туре	Stiffener		
Lid / Stiffener	Material	Stainless Steel		
Lid , tiffen	Thickness	1.8mm		
Ś	Adhesive	Silicone Adhesive		
de	Туре	Comm	ercial	
Chip Cap	Termination (top)	Leadfree w/ ep	poxy coating	
Chi	Termination (bottom)	SnPb	N/A	
bD	Wafer FAB	TSMC/T	Faiwan	
Manufacturing	Mask Set	Loc	ked	
actı	Assembly Location	SPIL/Taiwan		
anuf	Die/Substrate Connection	Copper pillar w/SnAg solder		
Š	BGA Ball Material	Eutectic		
Other	Moisture Sensitivity Level	MS	L - 4	
oth	Screening Level	Class B		

XQR Versal[™] Adaptive SoC Qualification & Screening

- AMD Class B qualification completed
 - Derived from MIL-PRF-38535
 - Groups A D
 - Burn-in
 - High-temp storage and operating life
 - Temp cycling
- All devices are screened to AMD Class B for organic packages
 - Derived from MIL-PRF-38535
 - AMD exceeds test temperature requirements we do tri-temp electrical testing
- For complete qualification details & results, please contact AMD Customer Quality team

Versal[™] Adaptive SoC Class B Qualification Summary

• AMD has successfully completed our Class B qualification for the Versal XQRVC1902 device

Stress Test	MIL-STD-883 JEDEC reference	Conditions	Duration / Sample Size	Results
Prod. Burn-in	TM 1015	Dynamic, Tj = 125°C Vccmax	160 hrs.	Passed
Group A	TM 5005	Functional, AC and DC Parameters Test at -55°C, 25°C and 125°C	Test at -55°C, 25°C and 125°C	Passed
Group B	Various JEDEC	Assembly Monitors	\checkmark	Passed
Group C ²	TM 1005	Tj = 125°C, Vccmax	2 lots, 90 units total - 1000 hours 1 lot, 45 units – 10,000 hours	Passed
HTS ¹	TM 1008	Ta = 150°C	1000 hours 3 lots, 75 units total	Passed
THB ¹	JESD22-A101	85°C / 85% RH, Vccmax	1000 hours 3 lots, 75 units total	Passed
Temp Cycle ¹	TM 1010	B: -55°C / 125°C	1000 cycles 3 lots, 75 units total	Passed
Group D ¹	TM 5005	Sub-Groups 1,3,4,5	3 lots, 15 units / subgroup	Passed

(1) Units submitted to MSL-4 preconditioning prior to stressing

AMD Qualification for Versal[™] XQRVE2302-SSRA784 (Class B)

• AMD has successfully completed our Class B qualification for the Versal XQRVE2302 device

Stress Test	MIL-STD-883 JEDEC reference	Conditions	Test Vehicle / Sample Size	Results
Prod. Burn-in	TM 1015 Dynamic, Tj = 125°C Vccmax. 160 hrs.		All units	Passed
Group A	TM 5005	Functional, AC and DC Parameters Test at -55°C, 25°C and 125°C	XQRVC1902-VSRA2197: 3 lots XQRVE2302-SSRA784: 1 lot	Passed
Group B	Various JEDEC	Assembly Monitors	XQRVC1902-VSRA2197: 3 lots XQRVE2302-SSRA784: 1 lot	Passed
Group C	TM 1005	Tj = 125°C, Vccmax, 1000 hrs.	XQRVC1902-VSRA2197: 3 lots, 135 units XQRVE2302-SSRA784: 1 lot, 45 units	Passed
HTS ¹	TM 1008	Ta = 150°C, 1000 hrs.	XQRVC1902-VSRA2197: 3 lots, 75 units	Passed
THB ¹	JESD22-A101	85°C / 85% RH, Vccmax, 1000 hrs.	XQRVC1902-VSRA2197: 3 lots, 75 units	Passed
Temp Cycle ¹	TM 1010	B: -55°C / 125°C, 1000 cycles	XQRVC1902-VSRA2197: 3 lots, 75 units XQRVE2302-SSRA784: 1 lot, 30 units	Passed
Group D ¹	TM 5005	Sub-Groups 1,3,4,5	XQRVC1902-VSRA2197: 3 lots, 15 units XQRVE2302-SSRA784: 1 lot, 15 units	Passed

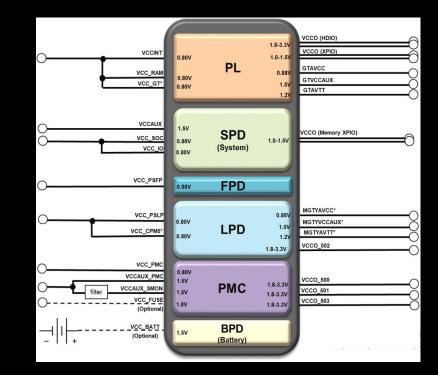
(1) Units submitted to MSL-4 preconditioning prior to stressing

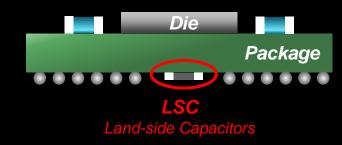
In support of the technology qualification, the XQRVC1902 device has passed 10,000 hours of Group C stressing

XQR Versal[™] Adaptive SoC Class B Screening Flow

- Screening flow modified to accommodate non-hermetic, organic substrate, flip chip, BGA packaging
- Derived from MIL-PRF-38535
- AMD exceeds the test requirements in pre burn-in electrical test
 - Spec. is 25°C
 - AMD tests at -55°C, 25°C & 125°C
- AMD adds bumping and serialization
- For mission duration up to 7 years

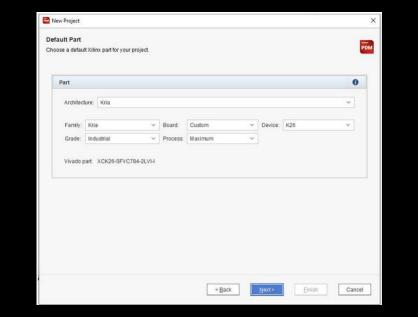
Flow	QML "Class B"	AMD Organic "Class B"
Wafer Sort	V	V
Bumping	N/A	V
Assembly (per MIL-STD-883)	V	Commercial
Bond Pull (Extended Pull Test)	N/A	N/A
Die Shear (1unit/lot)	V	V
Die Visual Inspection	Cond B	Commercial
Serialization	V	V
Temperature Cycling (cycles)	10	10
Constant Acceleration	N/A for flip chip	N/A for flip chip
PIND	N/A	N/A
Seal (Fine/Gross Leak Test)	N/A	N/A
X-Ray and/or CSAM	V	\checkmark
Pre Burn-in Electrical Test	@25C	@25C, 125C, -55C
Dynamic Burn-in @125C	160 hrs	160 hrs
Post Burn-in Test @25C with Read & Record	N/A	N/A
Static Burn-in (144 hours @125C)	N/A	N/A
Group A Post Burn-in Test @25C with Read & Record	V	V
Group A Final Test @-55C with Read & Record	V	\checkmark
Group A Final Test @125C with Read & Record	V	V
Column Attach	V	N/A (BGA Pkg)
100% QA Electrical @25C	V	N/A
Visual Inspection	V	\checkmark
Group B Lot Specific	V	V
Group C Sample to 44k device hours	Periodic	Periodic
Group D	Periodic	Periodic
Group E Total Ionizing Dose	N/A	N/A
DPA Sample/Ion Milling	N/A	N/A

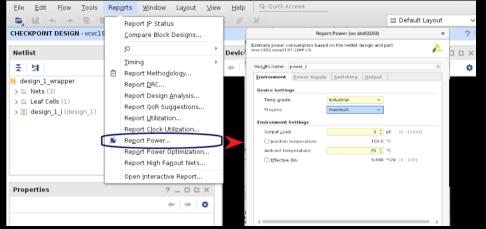

Note: (1) BGA balls will be attached during assembly


Power and Thermal Considerations

XQR Versal[™] Adaptive SoC Power

- Power Distribution Network (PDN)
 - Land-side capacitors (LSC): reduced distance to die; reduced package induction
 - Mix of substrate top-side, LSC and on-die caps helps mitigate noise across wide frequency range
- Xilinx Power Design Manager (PDM) available now
 - Stand-alone Java-based power estimator
 - Enhanced stability, user interface, IP wizards, XDC constraints
- Power Delivery
 - Partnerships for optimized, reliable, radiation tolerant power delivery
 - Monitoring, protections and flexible features to reduce BOM count and improve performance
- Power and Thermal Dissipation go hand-in-hand
 - Greater power density on Versal demands proper thermal mitigation
 - Must do complete thermal simulation
 - Siemens <u>Simcenter Flowtherm</u>
 - Ansys <u>lcePak</u>
 - XQR Versal thermal models will be available on Space Lounge





Power Design Manager Supports Two Major Design Flows

- AMD Power Design Manager (PDM) available now
 - Stand-alone Java-based power estimator
 - Enhanced stability, user interface, IP wizards, XDC constraints
- Manual Estimation Flow
 - Completely manual entries for power estimation
 - Start with device selection, followed by thermal specifications and configuring the PMC (platform management controller)
- Import Flow
 - You can import the XPE file generated from Vivado[®] power into PDM while creating a new project
 - You can also use existing estimations from XPE and import into PDM for Versal[™] and Kria[™] devices

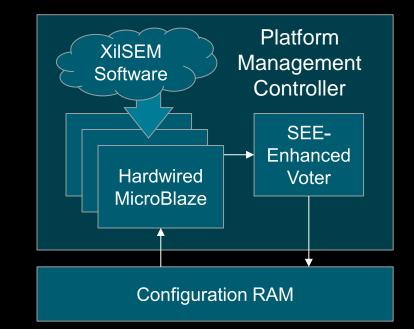
Addressing Thermal Design Challenges

- AMD highly recommends thermal simulation via Computational Fluid Dynamic software
- AMD has improved thermal simulation models
 - Predict the thermal performance of the device
 - Quickly iterate through different heat sinks, board placement, airflow directions and countless other scenarios
 - Swiftly and confidently arrive at optimal thermal solution
- Thermal design decisions must take place prior to board layout

- Choosing a material with high thermal conductive properties will ensure:
 - Complete coverage (>95%)
 - High reliability
- AMD is improving thermal performance by:
 - Refining and improving current processes
 - Introducing and embracing new packaging designs
- Low power screened XQRVC1902
 - ▶ 20% static power reduction in Icc
 - Ready for quote now using SCD append "5355" to ordering code

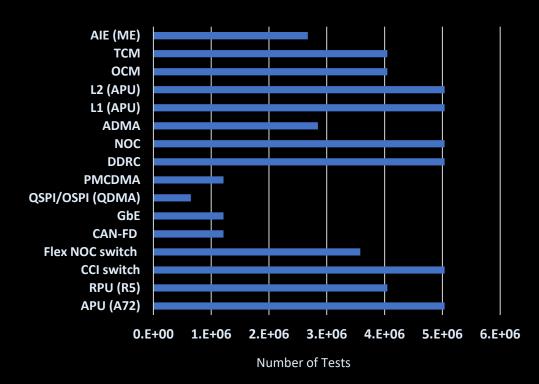
XQR Versal[™] Adaptive SoC Radiation Effects

Versal[™] Adaptive SoC Radiation Effects Summary

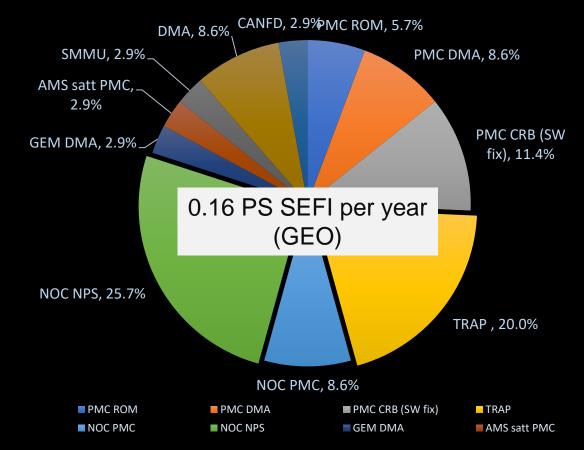

	Protons (2 – 105 MeV) Low Earth Orbit, 500 km, 20° inclination			Heavy-ions (1 - 80 MeV·cm²/mg) Geosynchronous Earth Orbit			TID
	CRAM SEU (upset/bit/day)	SEL	SEFI (events/device/ <mark>year</mark>)	CRAM SEU (upset/bit/day)	SEL	SEFI (events/device/ <mark>year</mark>)	(gamma)
Observed Rates	3.5x10 ⁻⁹	ZERO events observed	PS: 1.3 XilSEM: ZERO AIE: 1.5 GT: 2025	6.5x10 ⁻¹²	ZERO events observed	PS: 0.16 and XilSEM: 4.9x10⁻³ AIE: 2025 GT Quad: 1x10⁻³	PASS 120 KRad(Si)
Comments		Proton energy: 64-400MeV Environment: 1x10 ¹² p/cm ² at 125°C			ergy: 1-80 MeV·cr t: 1x10 ⁷ per ion/ci		<18 Krad/min

Estimates based on CREME96 AP8-Max; 500km and GEO models

- DUTs: Versal 7nm VC1902, 20 parts from 5 wafer lots to account for lot-to-lot variation
- ZERO SEL events in maximum V_{CC} and junction temperature conditions at LET up to 80 MeV·cm²/mg
- ZERO uncorrectable Configuration RAM (CRAM) events in LEO and GEO
 - Configuration RAM protected by EDAC and interleaving
- Robust XilSEM internal scrubber SEFI rate may eliminate need for on-board scrubber in space flight
 - Reference AMD / Xilinx user guides UG643 and PG352 for XilSEM scrubbing operation and cycle time
- AMD has published Versal SEE results at SEE/MAPLD 2022, NSREC 2022, 2023 and 2024, RADECS 2022 and 2023
 - Check <u>AMD / Xilinx Space Lounge</u> for new reports, links to conference papers and updated content


CRAM Soft Error Mitigation in XQR Versal[™] Adaptive SoC

- XQR Versal uses a novel approach to mitigate SEUs in configuration RAM (CRAM)
 - Previous generations of Xilinx FPGAs use SEM (Soft Error Manager) IP residing in the programmable logic fabric
 - XiISEM uses the hardwired TMR MicroBlaze[™] processors in the Platform Management Controller (PMC) as a fault-tolerant platform to mitigate upsets in the configuration RAM
 - Approx 30 times greater protection than previous techniques



	Kintex [™] UltraScale [™] XQRKU060	Versal XQRVC1902	Comments
Configuration Memory (Mb)	193 Mb	363 Mb	VC1902 has ~ 80% more CRAM than KU060
SEFI Rate per Device* (with mitigation, GEO solar min)	1 in 6 years Using SEM	1 in 200 years Using XiISEM	30X Improvement

PS test coverage and SEFI distribution

- SVT code used during beam test was modified to generate the required information for coverage analysis
- > 10 million tests were generated under the beam
 - R5/RPU, A72/APU and PMC (except security block) have been exercised > 4 million times
- Main SEFI signature: processor core hang (20%) or NOC NPS (26%)
 - Block not listed means that Zero SEFI was observed



AI/ML Radiation Induced Datapath Error Signatures

Example: Misclassification (Accuracy Degradation)

Actual Image⁽¹⁾

Predicted Image

Image: ILSVRC2012_val_00000383 Model: resnet-18 (SAT)

Golden Model Prediction (Top-1): komondor (sheep dog) (87.71%)

Actual Prediction (Top-1): window shade (61.65%)

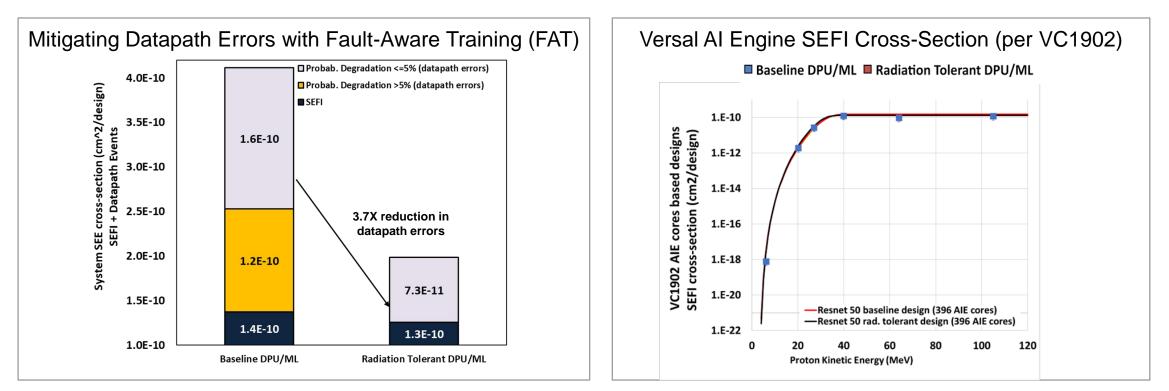
Note: (1) Images are for illustration; actual images were cropped to 224x224 and mean-centered prior to model training and classification; (2) Probability/certainty can increase as well as decrease. For analysis purposes, absolute value error magnitude was considered.

Example: Probability Error

(Certainty Degradation)⁽²⁾

Correct Classification, Different Probability

Image: ILSVRC2012_val_00024059 Model: resnet-18 (SAT)


Golden Model Prediction (Top-1): water ouzel, dipper (bird) (95.76%)

Actual Prediction: water ouzel, dipper (74.71%)

Probability Error = -21.06%

Single events induced faults can impact prediction accuracy and certainty; In addition to SEFI, SEE analysis should account for Datapath signatures

Versal[™] Adaptive SoC AI/ML Proton Test Results

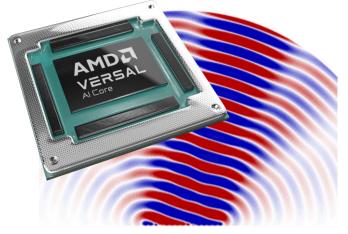
Radiation tolerant neural network response (vs. non-mitigated/baseline implementation), ResNet-50 network

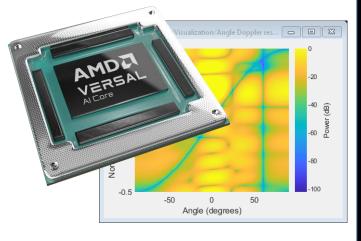
- ~ 4X reduction in datapath SEU induced errors w/ rad. tolerant FAT platform (vs. baseline)
- > 5% probability degradation events are fully mitigated in the rad-tolerant design
- SEFI occurrence is <10% of the overall rad-tolerant platform single event cross-section
- 1.5 event per ~ 400 cores per year (estimates using CREME96 AP8-Max; 500km, 52° inclination)
- Weibull parameters published in <u>Radiation Tolerant Versal AI Core Data Sheet (DS946)</u>
- P. Maillard et al., "Radiation-Tolerant Deep Learning Processor Unit (DPU)-Based Platform Using Xilinx 7-nm Versal Adaptive SoC AIE", IEEE NSREC 2024 AMD (AECG) Rad. Effects & RAS Team

AMD Versal[™] Adaptive SoC Support Ecosystem

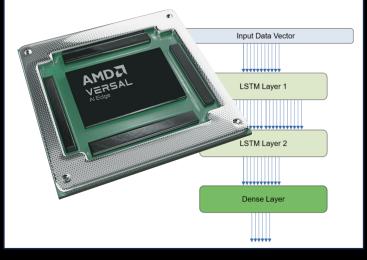
Versal[™] Adaptive SoC Support Ecosystem

- Configuration Memory
 - 3D-Plus
 - Avalanche
 - DDC
 - Infineon
 - Mercury Systems
- Development Platforms
 - Alpha Data ADK-VA601 (XCVC1902)
 - Alpha Data ADM-VB630 (XCVE2302, in development)
 - iWave iW-RainboW-G57M[®] (XCVE2302)
 - Trenz Electronic TE0950-01-EGBE11A (XCVE2302)

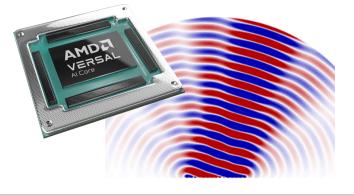

- Power Distribution
 - Frontgrade (CAES)
 - Infineon
 - Renesas
 - Texas Instruments
 - Vicor

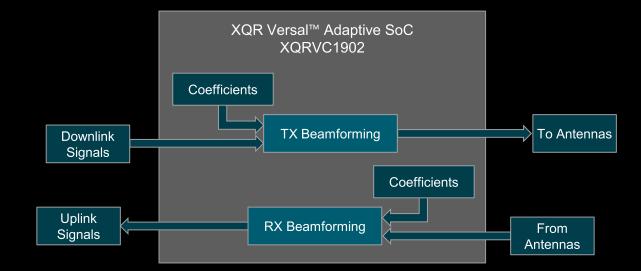

AMD Versal[™] Reference Designs

Versal[™] Adaptive SoCs in Space – Conference Papers



IEEE Space Computing Conference, July 2023 XQRVC1902 Radar Space Time Adaptive Processing using AMD Versal[™] Adaptive SoCs

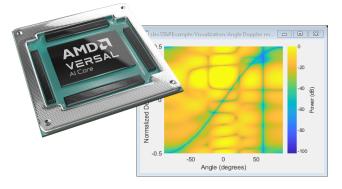

IEEE Space Computing Conference, July 2024 XQRVC1902 On-Orbit Anomaly Detection in Spacecraft Telemetry using RNNs in AMD Versal[™] Adaptive SoCs



IEEE Space Computing Conference, July 2024 XQRVE2302

Example 1: RF Beamforming

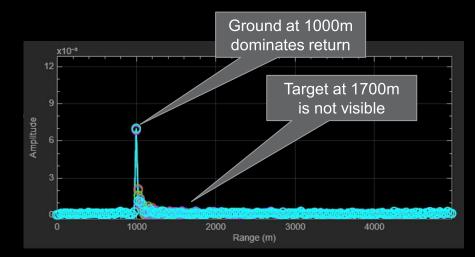
RF Beamforming in AMD XQR Versal[™] Adaptive SoCs using AI Engines



IEEE Space Computing Conference, July 2023 Image Credit: David Jessop, Licensed under Creative Commons Screenshot from <u>https://upload.wikimedia.org/wikipedia/commons/1/1e/Phasearray.gif</u>

- With 100 MHz bandwidth, 64 antennas, and 32 layers, downlink beamforming requires $100,000,000 \times 64 \times 32 = 204,800,000,000$ CMACs per second, 204.8 GCMAC/s
- Implementation in AI Engines gives device utilization and time-to-implement advantage over DSP
 - One AI Engine can compute 6,400,000,000 CMACs per second (at 80% runtime ratio) with 1 GHz clock
 - 32 AI Engines achieve 204.8 GCMAC/s in each direction 64 AI Engines total, out of 400 available
 - Modifications to design can be made in hours, not weeks
- For further information, consult AMD application note and reference design <u>XAPP1352</u>

Example 2: STAP Radar Processing

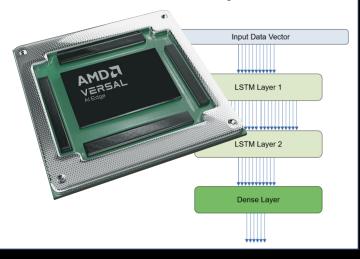

Radar Space Time Adaptive Processing using AMD Versal[™] Adaptive SoCs

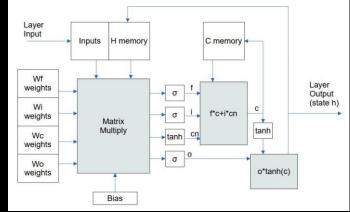


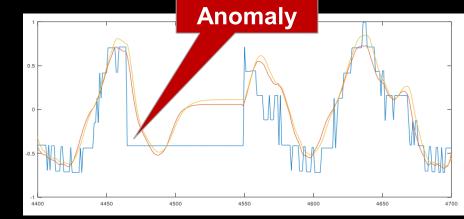
ESA EDHPC, Oct 2023, and updated at IEEE Space Computing Conference, July 2024 Image Credit: Mathworks Inc.

Resource	Amount Available in XQRVC1902	Amount Used in STAP Design	Percentage of Resources
LUTs (6 Input)	899,840	230,385	26%
SRAM	191 Mbit	50.4 Mbit	26%
DSP Engines	1,968	1,136	58%
AI Engines, Clock Rate	400	78, 1.25 GHz	20%

Reference design project files available direct from AMD




Both images credit: MathWorks Inc


https://www.mathworks.com/help/radar/ug/clutter-and-jammer-mitigationwith-stap.html?s_tid=srchtitle_site_search_2_STAP

Example 3: Real-time Telemetry Anomaly Detection

On-Orbit Anomaly Detection in Spacecraft Telemetry using RNNs in AMD Versal[™] Adaptive SoCs

- Design uses AMD Versal AI Edge VE2302
- Real-time on-orbit anomaly detection for up to 80 channels of spacecraft telemetry
- Reference design project files available from AMD and <u>Alpha Data Parallel Systems</u>

Resource	Amount Available in XQRVE2302	Amount Used in Anomaly Detector	Percentage of Resources
AIE-ML Tiles	34	24	70%
AIE-ML Memory	17 Mbit	440 Kbit	2.5%
Shared Memory	68 Mbit	54.7 Mbit	80%

Questions and Answers

Ken O'Neill Space Systems Architect koneill@amd.com Paul Lynch Customer Quality Engineer paul.lynch@amd.com

Timelines, roadmaps, and/or product release dates shown in these slides are plans only and subject to change.

The information contained herein is for informational purposes only and is subject to changeout notice. While every precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD's products are as set forth in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale.

©2025 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, Xilinx, the Xilinx logo, Kintex, Versal, Virtex and UltraScale and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies. ARM and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. Java is a registered trademark of Oracle and/or its affiliates. PCIe® is a registered trademark of PCI-SIG Corporation.