Designing dependable systems through a test-in-the-loop method

Bruno Forlin, Elijah Seth Cishugi, Madiha Sheikh, Tijmen T. Smit, Kuan-Hsun Chen, Nikolaos Alachiotis, Marco Ottavi

Introduction

As intelligent systems increasingly permeate various industries, the challenge of reducing implementation costs while ensuring high reliability and security becomes paramount, especially in critical domains like space applications. RISC-V has emerged as a flexible and cost-effective solution, promoting innovation through its open-source nature. However, the complexity introduced by its adaptability poses challenges for industries with stringent certification requirements. Traditional validation processes are often timeconsuming and expensive, necessitating a more efficient approach to certification. This research presents a novel methodology for accelerated validation of RISC-V intellectual property (IP), utilizing rapid bench and beam testing to assess hardware reliability and security against radiation-induced errors and security threats. By integrating standard hardware components and automation, our approach aims to streamline certification efforts, making RISC-V a competitive architecture for high-reliability applications while minimizing engineering costs and complexity.

DCS

Design Phase

- Emphasis on co-design of dependable hardware and software frameworks. E.g. probabilistic instruction validators, resilient execution environments.
- Development of a hardware shell for streamlined I/O interfacing and
 adaptability across multiple devices.

Bench Testing Phase

- Serves as holistic validation of Software Under Test (SUT) and Hardware Under Test (DUT)
- Involves post-simulation work on the final implemented platform.
- Provides preliminary reliability estimations.
- Crucial for security evaluations; results are considered final.
 Assessment of vulnerabilities through: Side-channel analysis, Glitch attack methodologies, TVLA for detecting information leakage.
- Fault injection to quantify system resilience.

Beam Testing Phase

- Real beam experiments yield real results.
- Strong correlation with fault emulation techniques.
- Beam experiments explicitly included in the methodology.
- Ensure that the software as part of the fixture is protected to exclusively target the SUT.

Validation Phase

- Validation of designs using results from bench and beam experiments.
 Create a contextual understanding of results.
- Side-channel analysis results correlated with specific instructions for targeted countermeasures.
- Vulnerabilities from glitching attacks addressed through enhanced countermeasures.
- Combining results from both testing stages deepens understanding of system behavior.

Platfrom

UNIVERSITY OF TWENTE.