- onlhan A U

. / N ———
‘ YosysHO

Building alternative FPGA toolchains
ESA Contract # 4000141380/23/NL/GLC/ov
N. Engelhardt, M. Milanovic

e S o —
" ——

—

' YosysHl
Presentation Overview

Tools introduction
NG-Ultra
Implementation
Conclusion

Q&A

. YosysHl
YosysHQ Open Source EDA Tools

e Yosys

o Where it all started

o Synthesis for FPGA and ASIC

o Useful as a general netlist manipulation tool
e nextpnr

o Place and route for FPGA

e \arious others not relevant today

o Formal verification
o Equivalence checking
o Mutation coverage

. YosysHl

—_____/ ~—

Why Open Source Tools?

H /_/’

. YosysHl
Synthesis (Yosys)

Pros: Cons:
e Generic tool - can be used for other e No full SystemVerilog support (possible
architectures as well with commercial libraries)
Easier integration with other tools e Resource limitations and timing
e Fine tuning of primitives used in output constraints are not known to synthesis
e Adding new optimization passes for e Optimization quality can be lower than in
research vendor tools

e Easy integration with LiteX and Amaranth

Place and route (nextpnr)

Pros:

e Generic infrastructure, faster to develop
Can integrate with other synthesis tools
(then using Yosys for conversions)

e Placement and routing algorithms are
generic
Can use HDL attributes for placement

e Can be used for research projects as way
to test various placement and routing
algorithms

. YosysHl

Cons:

No feedback loop to synthesis
So far rather small FPGAs were only
supported

e Algorithms are not performance optimized
Depending on architecture, possible that
design becomes non-routable.

e Implementing good placement require
more experience with architecture

Bitstream manipulation

Pros:

Makes complete flow open source
Enables binary bitstream back to netlist
conversion

Bitstream protection still requires same
signing process so good security is not a
problem

More control over process, like enabling
BRAM content or PLL configuration
change without affecting logic

. YosysHl

Cons:

e Require more knowledge of FPGA

internals

e Reversing can be quite long and tedious
process

e With vendor information is still a tedious
process

e May expose security issues (but that can
be good as well)

. YosysHl

—_____/ ~—

Implementing a flow for NG-Ultra

H /_/’

. YosysHl
What is special about the NG-Ultra?

e Much larger than previously supported architectures
o NG-Ultra has 500k LUT

e Unique structure
o Very large tile compared to other FPGAs

e Comparatively low routing availability

. YosysHl
Creating support for new architecture

e Familiarization with architecture
e Synthesis:
o Yosys support
m Adding synth_xxx pass
e Place and route:
o Chip database
m Primitive description
m Acquiring routing graph
o Bitstream manipulation tools
m Tools to extract bitstream into human readable files.
m And vice versa
o nextpnr support
m Import of chip database
m Implementation of architecture specifics

. YosysHl
Creating support for NG-Ultra

e Familiarization with architecture
e Synthesis:
© Yosys support Not main project goal
m Adding synth_xxx pass
e Place and route:
o Chip database .
s—Primitive-deseription Data provided by vendor
e . |
o Bitstream manipulation tools
- a'eel's foextractbitstrearm into-human-feadabie fies Using vendor tools
o nextpnr support
m Import of chip database
m Implementation of architecture specifics

' YosysHl

NG-Ultra flow
e Impulse/Yosys for synthesis
e nextpnr for place and route
e Impulse to generate binary bitstream
e \endor scripts to program board

Familiarization with architecture

Obtaining knowledge about architecture of target FPGA
Find description of HDL primitives

Familiarize with vendor tools and naming conventions
Obtain hardware (development board and accessories)
Create small examples that do work on actual hardware
Test complete flow using vendor tools

. YosysHl

. YosysHl
Yosys support

e Start by adding LUT and FF mapping support (
o Write simulation models for basic primitives ~\\4-‘;
o Use Yosys equivalence checks to confirm mapping is done right
o Confirm using place and route using vendor tools

e Continue by adding io pad mapping, carry chains, block ram, DSPs ...
o Custom passes sometimes needs to be added
o Add techmap rules for wrapper primitives
o Add black box definitions for primitives not planned to be supported

e Make parts of the flow optional and configurable
e NOTE: For NG-Ultra this was not part of the project, support is not complete
(mostly DSP related parts are missing)

. YosysHl
Chip database

e Routing information was provided by vendor in text format

e Extracting more information
o Recognize tiles and their types
o Model crossbars and muxes
o Validate signal direction for primitives

e Changes that can reflect in performance or QoR improvements:
o Placement:
m BEYOND_FE mapped to LUT + DFF pair
m Store metadata for special features (CSC, SCC) and lobe
o Routing:
m LUT permutations
m LUT and DFF propagation
m GCK and WFG propagation
m Store metadata of mapping to original data

. YosysHl

Bitstream manipulation tools

For this project we relied on vendor provided tools

Usually a reverse engineering task

Defines a mapping between bitstream bits and FPGA configuration

nextpnr outputs data in human readable format that needs to be converted to
a binary file

Usually we provide two-way conversion, going back from binary to text is
required to validation

. YosysHl
nextpnr architecture support

e PnR workflow
o Load netlist -> Pack -> Place -> Route -> Generate bitstream

e Generic algorithms built on the Arch API
Himbachel API as additional layer on top
e Packing

o Mapping between HDL and hardware primitives

o Checking input parameters

o Optimizing depending on input parameters
e Pre-placement (IO constraints, PLL and WFG pre-placement)
Post-placement (CSC, SCC and GCK insertion)

e Post-routing

Recalculating for LUT permutations
Propagation routing to primitive allocation
Fix crossbar configurations

Exporting bitstream

O

o O O

. YosysHl

Conclusion

Use cases

e As a user:

(@)

(@)
(@)
(@)
(@)
(@)

Small portable tools requiring no license to be used

All is open-source which makes full audit possible
Faster iteration of full workflow

Easier porting existing HDL designs to new architecture
Able to test design in different conditions

Easy to integrate with other open source tools

e As avendor:

(@)
(@)
(@)

Getting more potential hardware customers
Potential larger user base
Profit from general improvements in Yosys/nextpnr

. YosysHl

. YosysHl

Current state of Yosys NanoXplore support

Only NG-Ultra supported (no Ultra300 specifics implemented)
NG-Medium and NG-Large are just placeholders

Block RAM mapping does not efficiently use complete memory block
DSP mapping not implemented

Wrappers for DSP are missing

Simulation models only for basic primitives

. YosysHl
nextpnr for NG-Ultra

e Able to place and route designs of varying complexity with a comparable time
to Impulse.
o Of the designs we tested, some of the larger designs fail to place and route.
e Placement is crucial due to lower routability of the NG-Ultra architecture
compared to other FPGAs we’ve worked on.
e Complex designs that include usage of high speed I/Os and SoC are not
supported yet.

e Plenty of room to improve, specially placement optimizations.

. YosysHl

Q&A

. YosysHl

Thank you

