
Building alternative FPGA toolchains

N. Engelhardt, M. Milanović
ESA Contract # 4000141380/23/NL/GLC/ov

ESA Contract # 4000141380/23/NL/GLC/ov

Presentation Overview

● Tools introduction
● NG-Ultra
● Implementation
● Conclusion
● Q&A

ESA Contract # 4000141380/23/NL/GLC/ov

YosysHQ Open Source EDA Tools

● Yosys
○ Where it all started
○ Synthesis for FPGA and ASIC
○ Useful as a general netlist manipulation tool

● nextpnr
○ Place and route for FPGA

● Various others not relevant today
○ Formal verification
○ Equivalence checking
○ Mutation coverage

Why Open Source Tools?

ESA Contract # 4000141380/23/NL/GLC/ov

Synthesis (Yosys)

Pros:

● Generic tool - can be used for other
architectures as well

● Easier integration with other tools
● Fine tuning of primitives used in output
● Adding new optimization passes for

research
● Easy integration with LiteX and Amaranth

Cons:

● No full SystemVerilog support (possible
with commercial libraries)

● Resource limitations and timing
constraints are not known to synthesis

● Optimization quality can be lower than in
vendor tools

ESA Contract # 4000141380/23/NL/GLC/ov

Place and route (nextpnr)

Pros:

● Generic infrastructure, faster to develop
● Can integrate with other synthesis tools

(then using Yosys for conversions)
● Placement and routing algorithms are

generic
● Can use HDL attributes for placement
● Can be used for research projects as way

to test various placement and routing
algorithms

Cons:

● No feedback loop to synthesis
● So far rather small FPGAs were only

supported
● Algorithms are not performance optimized
● Depending on architecture, possible that

design becomes non-routable.
● Implementing good placement require

more experience with architecture

ESA Contract # 4000141380/23/NL/GLC/ov

Bitstream manipulation

Pros:

● Makes complete flow open source
● Enables binary bitstream back to netlist

conversion
● Bitstream protection still requires same

signing process so good security is not a
problem

● More control over process, like enabling
BRAM content or PLL configuration
change without affecting logic

Cons:

● Require more knowledge of FPGA
internals

● Reversing can be quite long and tedious
process

● With vendor information is still a tedious
process

● May expose security issues (but that can
be good as well)

Implementing a flow for NG-Ultra

ESA Contract # 4000141380/23/NL/GLC/ov

What is special about the NG-Ultra?

● Much larger than previously supported architectures
○ NG-Ultra has 500k LUT

● Unique structure
○ Very large tile compared to other FPGAs

● Comparatively low routing availability

ESA Contract # 4000141380/23/NL/GLC/ov

Creating support for new architecture

● Familiarization with architecture
● Synthesis:

○ Yosys support
■ Adding synth_xxx pass

● Place and route:
○ Chip database

■ Primitive description
■ Acquiring routing graph

○ Bitstream manipulation tools
■ Tools to extract bitstream into human readable files.
■ And vice versa

○ nextpnr support
■ Import of chip database
■ Implementation of architecture specifics

ESA Contract # 4000141380/23/NL/GLC/ov

Creating support for NG-Ultra

Data provided by vendor

Using vendor tools

● Familiarization with architecture
● Synthesis:

○ Yosys support
■ Adding synth_xxx pass

● Place and route:
○ Chip database

■ Primitive description
■ Acquiring routing graph

○ Bitstream manipulation tools
■ Tools to extract bitstream into human readable files.
■ And vice versa

○ nextpnr support
■ Import of chip database
■ Implementation of architecture specifics

Not main project goal

ESA Contract # 4000141380/23/NL/GLC/ov

NG-Ultra flow

● Impulse/Yosys for synthesis
● nextpnr for place and route
● Impulse to generate binary bitstream
● Vendor scripts to program board

ESA Contract # 4000141380/23/NL/GLC/ov

Familiarization with architecture

● Obtaining knowledge about architecture of target FPGA
● Find description of HDL primitives
● Familiarize with vendor tools and naming conventions
● Obtain hardware (development board and accessories)
● Create small examples that do work on actual hardware
● Test complete flow using vendor tools

ESA Contract # 4000141380/23/NL/GLC/ov

Yosys support

● Start by adding LUT and FF mapping support
○ Write simulation models for basic primitives
○ Use Yosys equivalence checks to confirm mapping is done right
○ Confirm using place and route using vendor tools

● Continue by adding io pad mapping, carry chains, block ram, DSPs …
○ Custom passes sometimes needs to be added
○ Add techmap rules for wrapper primitives
○ Add black box definitions for primitives not planned to be supported

● Make parts of the flow optional and configurable
● NOTE: For NG-Ultra this was not part of the project, support is not complete

(mostly DSP related parts are missing)

ESA Contract # 4000141380/23/NL/GLC/ov

Chip database

● Routing information was provided by vendor in text format
● Extracting more information

○ Recognize tiles and their types
○ Model crossbars and muxes
○ Validate signal direction for primitives

● Changes that can reflect in performance or QoR improvements:
○ Placement:

■ BEYOND_FE mapped to LUT + DFF pair
■ Store metadata for special features (CSC, SCC) and lobe

○ Routing:
■ LUT permutations
■ LUT and DFF propagation
■ GCK and WFG propagation
■ Store metadata of mapping to original data

ESA Contract # 4000141380/23/NL/GLC/ov

Bitstream manipulation tools

● For this project we relied on vendor provided tools
● Usually a reverse engineering task
● Defines a mapping between bitstream bits and FPGA configuration
● nextpnr outputs data in human readable format that needs to be converted to

a binary file
● Usually we provide two-way conversion, going back from binary to text is

required to validation

ESA Contract # 4000141380/23/NL/GLC/ov

nextpnr architecture support

● PnR workflow
○ Load netlist -> Pack -> Place -> Route -> Generate bitstream

● Generic algorithms built on the Arch API
● Himbächel API as additional layer on top
● Packing

○ Mapping between HDL and hardware primitives
○ Checking input parameters
○ Optimizing depending on input parameters

● Pre-placement (IO constraints, PLL and WFG pre-placement)
● Post-placement (CSC, SCC and GCK insertion)
● Post-routing

○ Recalculating for LUT permutations
○ Propagation routing to primitive allocation
○ Fix crossbar configurations
○ Exporting bitstream

Conclusion

ESA Contract # 4000141380/23/NL/GLC/ov

Use cases

● As a user:
○ Small portable tools requiring no license to be used
○ All is open-source which makes full audit possible
○ Faster iteration of full workflow
○ Easier porting existing HDL designs to new architecture
○ Able to test design in different conditions
○ Easy to integrate with other open source tools

● As a vendor:
○ Getting more potential hardware customers
○ Potential larger user base
○ Profit from general improvements in Yosys/nextpnr

ESA Contract # 4000141380/23/NL/GLC/ov

Current state of Yosys NanoXplore support

● Only NG-Ultra supported (no Ultra300 specifics implemented)
● NG-Medium and NG-Large are just placeholders
● Block RAM mapping does not efficiently use complete memory block
● DSP mapping not implemented
● Wrappers for DSP are missing
● Simulation models only for basic primitives

ESA Contract # 4000141380/23/NL/GLC/ov

nextpnr for NG-Ultra

● Able to place and route designs of varying complexity with a comparable time
to Impulse.

○ Of the designs we tested, some of the larger designs fail to place and route.
● Placement is crucial due to lower routability of the NG-Ultra architecture

compared to other FPGAs we’ve worked on.
● Complex designs that include usage of high speed I/Os and SoC are not

supported yet.
● Plenty of room to improve, specially placement optimizations.

Q&A

Thank you

