Politecnico di Torino Politecnico Reconfigurab	eliability Analysis of <u>SEFUW: 6th Space</u> ole Systems
CONTACTS: corrado.desio@polito.it	[,] Sarah Azimi, Davide Nicolini, Luca Sterpone Politecnico di Torino, Italy
MOTIVATION	PYXEL: A TOOLKIT FOR ANALYSIS OF RECONFIGURABLE SOCS
Reconfigurable SoC are flexible and performant radiation- sensitive, heterogenous, increasingly complex Systems. We need methodology, techniques, and experimenta flow for evaluating and assessing the robustness of System and Application based on Reconfigurable SoCs for safety-critical domains.	 SoC Robustness Assessment aware of SoC and System Architectures Emulation and Analysis of SEU and Fault Models Complex Evaluation Flow, Fully Integrated with modern CAD tools Supporting Latest AMD Devices
EVALUATION AND MITIGATION FLOW	APPING BLACK BOX

Circuit	Error Rates					
CIICUII	DDC	UD	SDC	Total		
Original PaR	5.47%	1.39%	1.12%	7.98%		
Hardened PaR	2.82%	0.27%	0.00%	3.09%		

Home Vie	w Analysis Tools					
Bitstrea	m Information		Bitmap View		Hardware	View
Name	01_dma_1_wrapper.bit				Resource	Interconnections
Size	10008 x 3232		○ Plain	Resources	Туре	INT_L
Part	xc7z020clg400-1		Pesources Filters		Name	INT_L_X52Y16
Configur	ation Memory View		✓ Logic ✓ Othe	rs ✔ BRAM (Interfaces)	Configura	ation Memory Statistics
Frame	6952	Value Ø	✓ Interconnections ✓ Cloc	k Lines ✔ BRAM (Data)	1-Bit	2464900
Bit	1085	Essential	✔ Flip-Flop	✔ DSP (Interfaces)	1-Ratio	7.620 %

from pyxel import Xbitstream

Xbs = Xbitstream('bitfile.bit') Xbs.cmem.flip_bit(42, 1024) Xbs.visualize()

exit(0)

- 🗆 🗆

VIEW 7	nalysis Tools	
<u>, </u>	E Reliability Analysis fo Programmable Hardware	r
orkspace	C:/Users/Corrado/Documents/pyxel/gui/workspace	
itstream	C:/Users/Corrado/Documents/PyXEL/gui/workspace/bitstreams/design_1_wrapper.bit	
ssential E	its	
itstream] Family	Series7	
itstream] Family Part	series7 xc7z020clg400-1	
itstream] Family Part Vendor	nformation Series7 xc7z020clg400-1 ARM-Xilinx Inc. KLNX® ZYNQ™ XC7Z020™ CLG400ABX1749	
itstream] Family Part Vendor	nformation Series7 xc7z020clg400-1 ARM-Xilinx Inc. on Memory Information	
itstream] Family Part Vendor onfigurati Size	nformation Series7 xc7z020clg400-1 ARM-Xilinx Inc. on Memory Information 32345856	
itstream] Family Part Vendor onfigurati Size Frames	nformation Series7 xc7z020clg400-1 ARM-Xilinx Inc. on Memory Information 32345856 10008 TAIWAN	

ENABLE DEVICE CHARACTERIZATION AND FAULT MODELING

- Analysis of Different **CRAM Technologies SEE** Cross-Sections, **MBU** Characterization
- Characterization of **On-Chip RAM**
 - SEUs, MBUs, SEFIs Cross-Sections
 - MCUs based on Physical RAM Layout

16nm FINFET VS 28nm CMOS

PAUL SCHERRER INSTITUT

PROTONS 40-160 MEV

ZYNQ-7020 ON-CHIP MEMORY

SUPPORT RELIABILITY ANALYSYS OF RECONFIGURABLE SOCS

Methodologies for Analysis of components of Reconfigurable SoCs

ZYNQ-7 RECONFIGURABLE SOC

2 PyXEL - Reliability Analysis for Programmable Hardware

FIRENN: NEURAL NETWORKS RELIABILITY EVALUATION ON HYBRID PLATFORMS

- Hard and Processors, Accelerators
- Hardware and Software Stacks
- Fault Modeling and Analysis

RTOS SOFTWARE STACK ON SOFT PROCESSORS

AGAINST SEU AND MCU IN CRAM

BAREMETAL VS RTOS SOFTWARE STACK ON HARD PROCESSORS AGAINST SEU AND MCU IN OCM

