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Accuracy in nominal 

situations equals classic 

approach. However, pose 

estimation in conditions 

with poor lighting and 

shadows, sudden 

illumination changes and 

partial occlusions is 

enhanced.

Therefore, this approach 

shows an increase in 

robustness. There is a risk 

of overfitting which 

doesn’t apply to classic 

pose estimation.

AI model was deployed on the Kria KR260, leveraging the Zynq UltraScale+ MPSoC and DPU 

(hier_dpu) for hardware acceleration (target DPU is DPUCZDX8G_ISA1_B512). A custom PetaLinux 

environment was created to include DPU and ensure efficient deployment. The implementation 

was developed using Vivado 2022.2 and Vitis AI 3.5.

Quantization transforms weights 

representation from float32 to uint8. Batch 

Normalization layers are also folded into 

the previous Convolutional layers. The 

model is then calibrated using the 

validation dataset and the loss function. 

The loss is 0.3406 for the quantized model 

over val. data, whereas for the original 

model the loss was 0.0187 for val. data.

The error function then calculates the 

deviation between ground truth and 

prediction for test data. This function 

shows a performance degradation of 4.22% 

for position and 10.96% for orientation of 

the quantized model on the FPGA 

compared to the original model on the 

GPU.
State Avg Power Consumption

KRIA KR260 Idle 3.820 W

KRIA KR260 Vivado 

post-implementation

prediction

3.886 W

KR260 Running model 4.030 W

GPU* Running model 73.550 W

Platfor

m
Latency

Nº instances

evaluated

Avg time per

 instance

GPU*
126,000 

ms
16,456 7.657 ms

FPGA 30,100 ms 100 301 ms

Error
Total avg. absolute error Allow. Error 

(red lines)GPU* FPGA

Position 2.011 mm 2.096 mm 20 mm

Rotation 0.073 deg 0.081 deg 3 deg

*NVIDIA GeForce RTX 3070 (5888 CUDA cores). 8GB 

memory. Driver version 560.35.03. CUDA version 12.6
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Introduction

GMV’s in-orbit servicing project requires 

an enhancement in the classic pose 

estimation method between two 

approaching vehicles with these features. 

In this poster the proposed DL method 

for the close-range phase of the 

rendezvous is presented.

ConclusionDevelopment

Resource Utilization Percentage in KRIA

LUT 30030 25.64%

LUTRAM 3602 6.25%

FF 41171 17.58%

URAM 18 28.13%

DSP 134 10.74%

BUFG 4 1.14%

PLL 1 12.50%

final train loss: 0.0154  - final validation loss: 0.0187

Model Loss over Epochs

Loss function has two learnable parameters ෞ𝜎𝑟 and ෝ𝜎𝑡 to balance 

learning between translation and rotation: 

ℒ = 𝐿𝑟 exp −2ෞ𝜎𝑟 +𝐿𝑡 exp −2ෝ𝜎𝑡 + 2(ෞ𝜎𝑟 + ෝ𝜎𝑡)

where 𝐿𝑟 = σ𝑖=1
𝑏𝑎𝑡𝑐ℎ ෝ𝑟𝑖 − 𝑟𝑖  and 𝐿𝑡 = σ𝑖=1

𝑏𝑎𝑡𝑐ℎ ෝ𝑡𝑖 − 𝑡𝑖

and || || denotes L2 norm. ෝ𝑟𝑖 denotes predicted rotation and 𝑟𝑖 denotes 

ground truth rotation. The same applies for translation.

Error function is:

- L2 norm between 𝑃𝑡𝑟𝑢𝑒 and 𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 for position

- Angle between 𝑅𝑡𝑟𝑢𝑒 and 𝑅𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 for orientation

Rotation, which is the most difficult learnable feature, is 

presented as the first two rows of the DCM (direction 

cosine matrix), since the third row is linearly dependent.

Z axis (blue) is the most 

changing position value. The 

rotation matrix is very similar 

to the identity matrix because if 

not, the rendezvous is aborted.

Future migration to a space-certified platform could be achieved using either a NanoXplore FPGA, which would require a complete redesign due to its unique architecture and 

lack of compatibility with the Vitis AI workflow, or a radiation-tolerant FPGA from AMD Xilinx. The latter includes options such as the XQR Versal, which offers built-in AI 

acceleration, improved fault tolerance, and a more familiar development environment, potentially allowing for partial reuse of the existing workflow.

Out of the 82k+ images from the 
52 trajectories in the CAT 
dataset of two approaching 
satellites, 60% were used for 
train., 20% for val., and 20% for 
test. to help prevent overfitting.

Normalize position 

values (specially Z) and 

apply Yeo-Johnson 

transform to 𝑹𝟏𝟏 and 𝑹𝟐𝟐  

Future work includes a reduction of the 

inference time given the resource utilization.

After quantization, fewer than 30 of 16,456 test images failed, mainly in 

extreme illumination cases. The model remains robust despite quantization 

and hardware transition. The model outperformed the classic CAT method 

in handling occlusions, lighting changes, and sudden shifts. Future work 

could merge both methods or apply filtering for added reliability. 

Positional error (XY) vs Z distance for test Positional error (Z) vs Z distance for test

Orientation error (XY) vs Z distance for test Orientation error (Z) vs Z distance for test

Error Function Results & Allowed Errors by Axis vs. Actual Z Distance
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