

SPIKING AUTOENCODER ARCHITECTURE FOR ANOMALY **DETECTION ON SATELLITE DATA WITH FPGAs**

Paolo Ritirato, Giuseppe Sorrentino, Davide Conficconi paolo.ritirato@mail.polimi.it

1. Motivation

State of the Art employs different techniques for **Time Series Anomaly Detection**. **ML** based methods which require **hardware** and **power** resources not suitable for **onboard application**^[1]. A specific use case is provided by ESA-ADB Research Article^[2].

1. snnTorch^[3] Python library is used to design, train and test the proposed SNN architecture.

2. Spiker+^[4] generates an HDL description of the network and simulates its behaviour.

4. Methodology

3. Vivado IDE runs synthesis and implementation on the target board.

2. Spiking Neural Network

Spiking Neural Network aims to replicate brain structure and behaviour. SNNs are implemented using **spiking neurons**, which communicate through simulated «spikes» of electrical activity, showing enhanced efficiency, faster processing, adaptive intelligence.

3. Spiking Autoencoder

The proposed architecture combines **Autoencoder** structure with SNNs.

The idea is to exploit Autoencoder ability to **compress data width** and SNNs' intrinsic capability to handle temporal dynamics.

5. Results

Software detection performances are comparable with ESA proposed approaches^[1] using **1/28 of training data**; Hardware FPGA validation shows timing performances compatible with

sampling frequency of the dataset using 1% of total available FF, LUT and BRAM and **120 mW** of power requirement.

	F0.5				
Phase	1	2	3	4	5
PCC/HBOS/iForest/Window iForest/KNN	< 0.001				
Global STD3	< 0.001			0.001	
Global STD5	0.041	0.037	0.104	0.217	0.253
DC-VAE-ESA STD3	< 0.001		0.007	0.009	0.003
DC-VAE-ESA STD5	0.007	0.0012	0.085	0.030	0.075
Teleman-ESA	0.059	0.058	0.122	0.309	0.178
Teleman-ESA-Pruned	0.227	0.311	0.776	0.776	0.786
ADStrobot	0.924	0.924	0.924	0.924	0.924

ENCODER

References

[1] Paul Boniol et al. "Dive into time-series anomaly detection: A decade review". In: arXiv preprint arXiv:2412.20512 (2024).

[2] Krzysztof Kotowskietal "European space agency benchmark for anomaly detection in satellite telemetry". In: arXiv preprint arXiv:2406.17826 (2024).

[3] Jason K Eshraghian et al. "Training spiking neural networks using lessons from deep learning". In: Proceedings of the IEEE 111.9 (2023), pp. 1016–1054.

[4] Alessio Carpegna, Alessandro Savino, and Stefano Di Carlo. "Spiker+: a framework for the generation of efficient Spiking Neural Networks FPGA accelerators for inference at the edge". In: arXiv preprint arXiv:2401.01141 (2024).

[5] Time Series Anomaly Detection Using Deep Learning. MathWorks. [6] Hiromichi Kamata, Yusuke Mukuta, and Tatsuya Harada. Fully Spiking Variational Autoencoder. Sept. 2021. doi: 10.48550/arXiv.2110.00375.

670 ns

Simulation time

7 ns Clock period

1% Area utilization

Power consumption

120 mW

Target board: PYNQ Z2 - XC7Z020

Acknowledgement

The authors want to thank ESA Academy and AMD University Program. We also thank Alessio Carpegna for his support as Spiker+ developer and main author.

