
SPIKING AUTOENCODER ARCHITECTURE FOR ANOMALY 
DETECTION ON SATELLITE  DATA WITH FPGAs

Paolo Ritirato, Giuseppe Sorrentino, Davide Conficconi
paolo.ritirato@mail.polimi.it

1.Motivation

2. Spiking Neural Network

3. Spiking Autoencoder

State of the Art employs dierent techniques for Time Series Anomaly
Detection. ML based methods which require hardware and power 
resources not suitable for onboard application[1]. A specific use case 
is provided by ESA-ADB Research Article[2].

The proposed architecture combines Autoencoder structure with 
SNNs.
The idea is to exploit Autoencoder ability to compress data width and 
SNNs’ intrinsic capability to handle temporal dynamics. 

Spiking Neural Network aims to replicate brain structure and 
behaviour. SNNs are implemented using spiking neurons, which
communicate through simulated «spikes» of electrical activity, showing
enhanced eiciency, faster processing, adaptive intelligence.
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4. Methodology

1. snnTorch[3] Python library is used to design, train and test the 
proposed SNN architecture.

2. Spiker+ [4] generates an HDL description of the network and simulates
its behaviour.

3. Vivado IDE runs synthesis and implementation on the target board.

5. Results
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Phase 1 2 3 4 5

PCC/HBOS/iForest/Window iForest/KNN <0.001

Global STD3 <0.001 0.001

Global STD5 0.041 0.037 0.104 0.217 0.253

DC-VAE-ESA STD3 <0.001 0.007 0.009 0.003

DC-VAE-ESA STD5 0.007 0.0012 0.085 0.030 0.075

Teleman-ESA 0.059 0.058 0.122 0.309 0.178

Teleman-ESA-Pruned 0.227 0.311 0.776 0.776 0.786

ADStrobot 0.924 0.924 0.924 0.924 0.924

Software detection performances are comparable with ESA proposed
approaches[1] using 1/28 of training data;
Hardware FPGA validation shows timing performances compatible with 
sampling frequency of the dataset using 1% of total available FF, LUT and 
BRAM and 120 mW of power requirement.
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Target board: PYNQ Z2 - XC7Z020


