
To make the hardware design feasible, the following simpli+
fications were necessary:
• Only one D_clock line for each peripheral board was

connected to the FPGA.
• No F_Clock line was connected to the FPGA.
This simplification allows for a 62.5% reduction in con-
nections, (min from 2x3x48=288 to min
2x1x48+2x(48/8)=108, max from 2x3x72=432 to
2x1x72+2x(72/8)=162)).
The focus of this study was to find an implementation solu+
tion to meet the constraints mentioned in section 3 given
the indicated simplifications.

2.3
Hypothetical
simplifications
and impact on
hardware design

Simplifying the management of
multiple ADC data interfaces
using PolarFire: a case study

2. PROBLEM DESCRIPTION

3. PROBLEM SOLUTION

A common scenario in hardware design for complex space
systems is the need for simplification, driven by require+
ments such as weight, volume, power consumption, and
cost. This often leads to resource limitations that pose
significant challenges for designers.
Modern FPGAs can offer resources that help to address
these challenges through unconventional approaches. It is
crucial for designers to have a comprehensive understan+
ding of the toolbox that FPGA technology provides to explo+
re alternative solutions when traditional methods are not
feasible.
In this case study, a large number of ADCs needed to be
properly connected to a central processing FPGA imple-
mented on a PolarFire device RTPF500T-1CG1509 (trials
were also conducted on RT300).

1. ABSTRACT
Due to hardware design constraints, the number of
signals from the ADCs to the FPGA exceeded the avai-
lable backplane connections. Additionally, challenges
arose in meeting the mutual timing constraints of the rou+
table interface signals.
The problem was resolved by combining system-level
control with PolarFire features, leading to substantial ex+
ternal hardware simplification. The resulting solution meets
all system requirements and has proven to be more robust
than the originally intended architecture, both in minimi+
zing points of failure and in its resilience to long-term varia+
tions, such as aging and signal drift.

In an ever-evolving technological scenario, the requirement
for data throughput to be exchanged among electronic
components is continuously growing, and such growth is
usually made feasible by new interface protocols able to
manage higher and higher data rates.
For instance, in the DSP field, the development of the JESD
protocol in its various versions has optimized hardware
connections between ADCs, DACs, and FPGAs.
However, sometimes architecture evolution is based on
increased resources parallelism, maintaining classical
connection interfaces while increasing the number of con+
nections themselves. This increase leads to a proliferation
of hardware connections among components within the
architecture, reaching numbers that pose a routing chal+
lenge.
In the present case study, based on parameters of genuine
interest for architectures under development, an FPGA is
tasked with processing data from a large number of
ADCs (48-72 as a range, distributed in groups of 8 on va+

2.1
Context

rious peripheral boards). Each interface between ADCs and
FPGA is a typical co-directional interface consisting of:
• a Data Clock line (D_clk)
• a data line carrying the sampled signal at N serialized

bits (Data)
• a Frame Clock line (F_clk) determining the word boun+

dary of the data.
Frequency range of interest for D_clk are in the order of
200 to 400 MHz, with Data running at double data rate.
An interface description is provided in FIGURE 1. As a fur+
ther hardware complication, lines are typically differential,
requiring each ADC to have 6 physical connections with the
FPGA.
All ADCs receive the same sampling clock, generating both
F_clk and D_clk, thus all F_clk run at the same frequency, as
well as all D_clk. FIGURE 2 describes a simplified block dia+
gram of the system.

Several issues arose during the hardware design phase of
the architecture demonstrator:
• The total number of connections required between

ADCs and FPGA (min 2x3x48=288, max 2x3x72=432)
exceeded the available connections between periphe+
ral boards and the central processing unit. Thus, it was
necessary to find ways to decrease this number.

• There was obviously a need for a phase relation among
D_clock, F_clock, and Data to ensure correct data sam+

2.2
Hardware design
constraints

pling and accurate word reconstruction representing the
N-bit sample by the FPGA.

• It was essential that data from various interfaces,
once deserialized inside the FPGA, be temporally ali-
gned. It was not acceptable to have random delays
between reconstructed signals from different lines (Note:
a deterministic delay, removable during processing, is
acceptable).

The first problem to address was the correct resampling of
the serial data. Without the availability of each line’s ac+
companying D_clock, a dynamic data\clock phase adjust+

3.1
Bit alignment

ment system was implemented using the PF_IOD_GENERI-
C_RX macro and developing a controller for fine-tuning
the sampling point.

It was decided to operate the entire RX section with a single
clock, chosen from the 6/8 available inputs. To this purpose,
a clock mux tree was set up as shown in FIGURE 3. This
choice was based on simplifying data processing within the
FPGA by using a single clock domain. Additionally, making
the processing clock selectable offers redundancy of
clock sources to the system, drastically reducing the
chance of failure and providing an extra feature in terms of
design safety.
However, the choice of a single clock necessitates modifica-

3.1.1
D_clock
mux tree

tions to the PolarFire RX macro, which, in Microchip's pro+
posed implementation, operates with a clock coming from
dedicated pins and not from the FPGA fabric side. Additio+
nally, the clock returned by the macro to the fabric side,
along with the deserialized data, is generated within each of
the FPGA IO banks. In order to use a single clock among lines
from different banks, a modification of the PolarFire soft
macro has been implemented.

As shown in FIGURE 4, the RX section of this macro is equip+
ped with an array of 256 analog delay lines, each capable of
applying roughly 25ps delay to the incoming signal. As
shown in FIGURE 5, the macro receives the data serial line
from the pad and samples it with an interface clock working
in DDR. EYE_MONITOR_EARLY and EYE_MONITOR_LATE
alarms are used to indicate when the clocking point is
too close to data edges. An external logic has been develo+
ped for opportunely adding or subtracting delay lines in

3.1.2
PF_IOD_
GENERIC_RX

order to center the correct sampling point. The macro can
signal, through EARLY and LATE controls, if the sampling
point of the data downstream of the configured delays ap+
proaches the data transition point (and the activation di+
stance is configurable at runtime). Finally, the sampled data
is deserialized with a configurable parallelism M and made
available on the FPGA fabric side.

When bit alignment is requested, the developed controller
follows this procedure:
a) Initialize the macro’s analog delays to zero.
b) Start sampling incoming data, recording whether the
violation signals (early or late) activate at the current
delay. The recording occurs by setting 1 (violation) or 0
(non-violation) on an array of 256 registers (one for each cu+
mulative delay element).
c) Increment the analog delay by one.
d) Repeat points b) and c) until the last delay.

3.1.3
Bit alignment
controller

e) Analyze the violation array to identify the maximum
interval of absence of violations (the longest sequence of
zeros).
f) Configure the sampling point at the center of this
interval.
At the procedure’s end, the user can choose to disable or
keep tracking the optimal sampling point active, based on
parameters dependent on usage type.
FIGURE 6a and FIGURE 6b explain the described procedure.

After obtaining bit alignment, the next essential operation is
properly reconstructing the sample boundary. Typically
related to the use of F_clock in the normal functioning of the
ADC interface, this operation is not possible without F_clock
and requires a procedure involving both ADCs and FPGA.

3.2
Sample
alignment

The used ADC (TI ADC368), like many commercial others, in+
cludes various debug modes, one of which, pattern mode,
allows sending a configurable word on the Data line. The
ADC formats the word under F_clock, letting the receiver
synchronize with this word to deduce the F_clock position

3.2.1
ADC pattern
mode

and correctly deserialize the data. The pattern mode is set
up during the alignment procedure.
FIGURE 7 depicts one of the possible pattern modes for TI
ADC368.

A pattern aligner was thus developed to determine the
word boundaries of input data. It works similarly to classic
parallel aligners (e.g., the ones used in SDH) utilizing the pa+
rallel data from the macro and providing the reconstructed
parallel sample along with an enable on the FPGA fabric side.
This pattern aligner was designed with input parallelism of 4

3.2.2
Pattern aligner

and output of 16 or input parallelism of 7 and output of 14,
with an enable valid every 4 or 2 phases, respectively, to
match different ADC modes.

This is essential for obvious reasons, and is achieved by en-
suring phase-aligned arrival of the sampling clock at all
ADCs. It involves hardware tuning by compensating clock
track lengths from distributors to ADCs during design, fol+
lowed by calibrating analog delays programmable at the
clock distributor outputs. During this phase, the FPGA can be
used to measure differential delays in data paths.

3.3.1
Alignment of
all ADC
sampling points

The final system constraint to match is the temporal align-
ment of samples from different ADCs once reconstructed
within the FPGA, meaning two samples taken simultaneou+
sly at time T from two different ADCs must be aligned inside
the FPGA. (Note: a deterministic delay, known during system

3.3
Datastream
alignment

calibration and repeatable with each system startup post-a+
lignment procedure, is acceptable as well).
This requires two further procedures.

With assured simultaneous arrival of data streams at va+
rious RX interfaces of the FPGA, simultaneous sampling of
the incoming lines must be ensured. The PF_IOD_GENERI+
C_RX macro provides the first M bits (4 or 7 in different ap+
plications) starting from the first sample acquired by the IO
macro after the reset release.
Unfortunately, the involved frequencies do not guarantee
that the resynchronized resets of various macros will have
simultaneous effect.
Thus, the following procedure has been introduced:
a) Turn off the common reference clock for all interfaces.
b) Assert the asynchronous (non-resynchronized) reset.

3.3.2
Controlled start
of datastream
alignments for
all RX interfaces

c) Restart the reference clock.
This way, zero or minimal phase differences (which can be
absorbed by the pattern aligner) will ensure bit-aligned
outputs from the PF_IOD_GENERIC_RX macro’s parallel in+
terfaces. FIGURE 8a explains how a wrong reset release
impact the alignment behavior, while FIGURE 8b depicts the
correct procedure.

The implemented solution has guaranteed the system fea-
sibility and brought additional positive effects:
a) Hardware connections are significantly reduced (>
60%).
b) With DSP relying on a single clock received by the FPGA
from 6 to 9 interfaces in various configurations, several dan-
gerous single failure points are eliminated.
c) The data sampling and tracking mechanism simplifies
hardware design, with the FPGA not needing to guarantee
strict phase constraints compliance between data and
clock.

4. CONCLUSIONS
d) As this mechanism is dynamic, it can remain active or
can be repeated during operational phases, absorbing
medium and long-term variations like wandering and
aging.
The experience suggested other fields of interest in which
unconventional use of last generation FPGAs’ resources can
make the difference. Just for instance, a kind of minimal in+
terconnections control interface based on the above descri+
bed implementation is under study for future applications.

Figure 1

Figure 2
System block diagram

Figure 3
Clock tree

Figure 7
Pattern aligner

Figure 4

Figure 5

Figure 6a
Bit alignment controller procedure
a) Eye detection example

Figure 6b
Bit alignment controller procedure
a) Optimal sampling point choise

Figure 8a
Unsynchronized RX IOD
deserializer start

Figure 8b
Stopped clock RX IOD
deserializer start

Author
Roberto Capezzali
Thales Alenia Space
Specialist in VLSI Design
for Radar Applications
roberto.capezzali@thalesaleniaspace.com

