
To make the hardware design feasible, the following simpli+
fications were necessary:
• Only one D_clock line for each peripheral board was 

connected to the FPGA.
• No F_Clock line was connected to the FPGA.
This simplification allows for a 62.5% reduction in con-
nections, (min from 2x3x48=288 to min 
2x1x48+2x(48/8)=108, max from 2x3x72=432 to 
2x1x72+2x(72/8)=162)).
The focus of this study was to find an implementation solu+
tion to meet the constraints mentioned in section 3 given 
the indicated simplifications.

2.3
Hypothetical
simplifications
and impact on
hardware design

Simplifying the management of 
multiple ADC data interfaces 
using PolarFire: a case study

2. PROBLEM DESCRIPTION

3. PROBLEM SOLUTION

A common scenario in hardware design for complex space 
systems is the need for simplification, driven by require+
ments such as weight, volume, power consumption, and 
cost. This often leads to resource limitations that pose 
significant challenges for designers.
Modern FPGAs can offer resources that help to address 
these challenges through unconventional approaches. It is 
crucial for designers to have a comprehensive understan+
ding of the toolbox that FPGA technology provides to explo+
re alternative solutions when traditional methods are not 
feasible.
In this case study, a large number of ADCs needed to be 
properly connected to a central processing FPGA imple-
mented on a PolarFire device RTPF500T-1CG1509 (trials 
were also conducted on RT300). 

1. ABSTRACT
Due to hardware design constraints, the number of 
signals from the ADCs to the FPGA exceeded the avai-
lable backplane connections. Additionally, challenges 
arose in meeting the mutual timing constraints of the rou+
table interface signals.
The problem was resolved by combining system-level 
control with PolarFire features, leading to substantial ex+
ternal hardware simplification. The resulting solution meets 
all system requirements and has proven to be more robust 
than the originally intended architecture, both in minimi+
zing points of failure and in its resilience to long-term varia+
tions, such as aging and signal drift.

In an ever-evolving technological scenario, the requirement 
for data throughput to be exchanged among electronic 
components is continuously growing, and such growth is 
usually made feasible by new interface protocols able to 
manage higher and higher data rates.
For instance, in the DSP field, the development of the JESD 
protocol in its various versions has optimized hardware 
connections between ADCs, DACs, and FPGAs.
However, sometimes architecture evolution is based on 
increased resources parallelism, maintaining classical 
connection interfaces while increasing the number of con+
nections themselves. This increase leads to a proliferation 
of hardware connections among components within the 
architecture, reaching numbers that pose a routing chal+
lenge.
In the present case study, based on parameters of genuine 
interest for architectures under development, an FPGA is 
tasked with processing data from a large number of 
ADCs (48-72 as a range, distributed in groups of 8 on va+

2.1
Context

rious peripheral boards). Each interface between ADCs and 
FPGA is a typical co-directional interface consisting of:
• a Data Clock line (D_clk)
• a data line carrying the sampled signal at N serialized 

bits (Data)
• a Frame Clock line (F_clk) determining the word boun+

dary of the data.
Frequency range of interest for D_clk are in the order of 
200 to 400 MHz, with Data running at double data rate. 
An interface description is provided in FIGURE 1. As a fur+
ther hardware complication, lines are typically differential, 
requiring each ADC to have 6 physical connections with the 
FPGA.
All ADCs receive the same sampling clock, generating both 
F_clk and D_clk, thus all F_clk run at the same frequency, as 
well as all D_clk. FIGURE 2 describes a simplified block dia+
gram of the system.

Several issues arose during the hardware design phase of 
the architecture demonstrator:
• The total number of connections required between 

ADCs and FPGA (min 2x3x48=288, max 2x3x72=432) 
exceeded the available connections between periphe+
ral boards and the central processing unit. Thus, it was 
necessary to find ways to decrease this number.

• There was obviously a need for a phase relation among 
D_clock, F_clock, and Data to ensure correct data sam+

2.2 
Hardware design 
constraints

pling and accurate word reconstruction representing the 
N-bit sample by the FPGA.

• It was essential that data from various interfaces, 
once deserialized inside the FPGA, be temporally ali-
gned. It was not acceptable to have random delays 
between reconstructed signals from different lines (Note: 
a deterministic delay, removable during processing, is 
acceptable).

The first problem to address was the correct resampling of 
the serial data. Without the availability of each line’s ac+
companying D_clock, a dynamic data\clock phase adjust+

3.1
Bit alignment

ment system was implemented using the PF_IOD_GENERI-
C_RX macro and developing a controller for fine-tuning 
the sampling point.

It was decided to operate the entire RX section with a single 
clock, chosen from the 6/8 available inputs. To this purpose, 
a clock mux tree was set up as shown in FIGURE 3. This 
choice was based on simplifying data processing within the 
FPGA by using a single clock domain. Additionally, making 
the processing clock selectable offers redundancy of 
clock sources to the system, drastically reducing the 
chance of failure and providing an extra feature in terms of 
design safety.
However, the choice of a single clock necessitates modifica-

3.1.1
D_clock
mux tree

tions to the PolarFire RX macro, which, in Microchip's pro+
posed implementation, operates with a clock coming from 
dedicated pins and not from the FPGA fabric side. Additio+
nally, the clock returned by the macro to the fabric side, 
along with the deserialized data, is generated within each of 
the FPGA IO banks. In order to use a single clock among lines 
from different banks, a modification of the PolarFire soft 
macro has been implemented.

As shown in FIGURE 4, the RX section of this macro is equip+
ped with an array of 256 analog delay lines, each capable of 
applying roughly 25ps delay to the incoming signal. As 
shown in FIGURE 5, the macro receives the data serial line 
from the pad and samples it with an interface clock working 
in DDR. EYE_MONITOR_EARLY and EYE_MONITOR_LATE 
alarms are used to indicate when the clocking point is 
too close to data edges. An external logic has been develo+
ped for opportunely adding or subtracting delay lines in 

3.1.2
PF_IOD_
GENERIC_RX

order to center the correct sampling point. The macro can 
signal, through EARLY and LATE controls, if the sampling 
point of the data downstream of the configured delays ap+
proaches the data transition point (and the activation di+
stance is configurable at runtime). Finally, the sampled data 
is deserialized with a configurable parallelism M and made 
available on the FPGA fabric side.

When bit alignment is requested, the developed controller 
follows this procedure:
a)  Initialize the macro’s analog delays to zero.
b) Start sampling incoming data, recording whether the 
violation signals (early or late) activate at the current 
delay. The recording occurs by setting 1 (violation) or 0 
(non-violation) on an array of 256 registers (one for each cu+
mulative delay element).
c)   Increment the analog delay by one.
d)   Repeat points b) and c) until the last delay.

3.1.3
Bit alignment
controller

e)   Analyze the violation array to identify the maximum 
interval of absence of violations (the longest sequence of 
zeros).
f)   Configure the sampling point at the center of this 
interval.
At the procedure’s end, the user can choose to disable or 
keep tracking the optimal sampling point active, based on 
parameters dependent on usage type.
FIGURE 6a and FIGURE 6b explain the described procedure.

After obtaining bit alignment, the next essential operation is 
properly reconstructing the sample boundary. Typically 
related to the use of F_clock in the normal functioning of the 
ADC interface, this operation is not possible without F_clock 
and requires a procedure involving both ADCs and FPGA.

3.2
Sample
alignment

The used ADC (TI ADC368), like many commercial others, in+
cludes various debug modes, one of which, pattern mode, 
allows sending a configurable word on the Data line. The 
ADC formats the word under F_clock, letting the receiver 
synchronize with this word to deduce the F_clock position 

3.2.1
ADC pattern
mode

and correctly deserialize the data. The pattern mode is set 
up during the alignment procedure.
FIGURE 7 depicts one of the possible pattern modes for TI 
ADC368.

A pattern aligner was thus developed to determine the 
word boundaries of input data. It works similarly to classic 
parallel aligners (e.g., the ones used in SDH) utilizing the pa+
rallel data from the macro and providing the reconstructed 
parallel sample along with an enable on the FPGA fabric side. 
This pattern aligner was designed with input parallelism of 4 

3.2.2
Pattern aligner

and output of 16 or input parallelism of 7 and output of 14, 
with an enable valid every 4 or 2 phases, respectively, to 
match different ADC modes.

This is essential for obvious reasons, and is achieved by en-
suring phase-aligned arrival of the sampling clock at all 
ADCs. It involves hardware tuning by compensating clock 
track lengths from distributors to ADCs during design, fol+
lowed by calibrating analog delays programmable at the 
clock distributor outputs. During this phase, the FPGA can be 
used to measure differential delays in data paths.

3.3.1
Alignment of
all ADC
sampling points

The final system constraint to match is the temporal align-
ment of samples from different ADCs once reconstructed 
within the FPGA, meaning two samples taken simultaneou+
sly at time T from two different ADCs must be aligned inside 
the FPGA. (Note: a deterministic delay, known during system 

3.3
Datastream
alignment

calibration and repeatable with each system startup post-a+
lignment procedure, is acceptable as well).
This requires two further procedures.

With assured simultaneous arrival of data streams at va+
rious RX interfaces of the FPGA, simultaneous sampling of 
the incoming lines must be ensured. The PF_IOD_GENERI+
C_RX macro provides the first M bits (4 or 7 in different ap+
plications) starting from the first sample acquired by the IO 
macro after the reset release.
Unfortunately, the involved frequencies do not guarantee 
that the resynchronized resets of various macros will have 
simultaneous effect.
Thus, the following procedure has been introduced:
a)   Turn off the common reference clock for all interfaces.
b)   Assert the asynchronous (non-resynchronized) reset.

3.3.2
Controlled start 
of datastream
alignments for
all RX interfaces

c)   Restart the reference clock.
This way, zero or minimal phase differences (which can be 
absorbed by the pattern aligner) will ensure bit-aligned 
outputs from the PF_IOD_GENERIC_RX macro’s parallel in+
terfaces. FIGURE 8a explains how a wrong reset release 
impact the alignment behavior, while FIGURE 8b depicts the 
correct procedure.

The implemented solution has guaranteed the system fea-
sibility and brought additional positive effects:
a)   Hardware connections are significantly reduced (> 
60%).
b)   With DSP relying on a single clock received by the FPGA 
from 6 to 9 interfaces in various configurations, several dan-
gerous single failure points are eliminated.
c)   The data sampling and tracking mechanism simplifies 
hardware design, with the FPGA not needing to guarantee 
strict phase constraints compliance between data and 
clock.

4. CONCLUSIONS
d)   As this mechanism is dynamic, it can remain active or 
can be repeated during operational phases, absorbing 
medium and long-term variations like wandering and 
aging.
The experience suggested other fields of interest in which 
unconventional use of last generation FPGAs’ resources can 
make the difference. Just for instance, a kind of minimal in+
terconnections control interface based on the above descri+
bed implementation is under study for future applications.
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