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ODiToo, Agenium Space’s proprietary 
software, is being enhanced within the 
Edge SpAIce project to compress large 
DNNs for deployment on Earth 
Observation satellites. The software 
enables DNN distillation, reducing 
network size to 1M or less parameters 
with less than 6% accuracy loss (3% 
from parameter reduction, 3% from 
quantisation). 

During training, dynamic quantisation will 
minimise accuracy loss. By using arbitrary 
bits per computation, ODiToo can support 
larger DNNs on the same FPGA size, 
maximising performance and scalability.

Enabling Onboard Data Compression with Machine Learning on FPGAs

S. Tzelepis1,2, N. Ghielmetti1, N. M. Lemoine3, M. Pierini1, S. Summers1, F. De Vielleville3

Oceanic Marine Litter 
Semantic Segmentation

Quantisation-Aware Distillation

FastML based FPGA implementation

The project aims to enhance 
marine plastic litter detection by 
training cutting-edge DNNs. 
By integrating the MADOS 
dataset [1] and global datasets, 
NTUA team develops software 
for harmonising data, enabling 
more precise detection. The 
system distinguishes plastic litter 
from other sea surface features 
(waves, ships, etc.),  
offering more nuanced 
classifications models than basic 
binary classifiers. High-
performance DNNs optimised for 
GPU clusters is trained to achieve superior detection accuracy, addressing scalability and 
generalisation challenges.

Knowledge Distillation Algorithm

Edge SpAIce

FIFO Depth Optimisation

QONNX vs hls4ml

We demonstrate the pipeline of 
Knowledge Distillation, quantization 
and hls4ml deployment with a UNet 
model trained on the ALCD dataset 
for clouds segmenation [2]. The 
quantised and distilled model is 
exported in QONNX format, 
an open-source extension of ONNX 
developed by the Fast ML 
community to support arbitrary 
precision quantisation. In order to 
check the functional consistency 
between QONNX and the 
corresponding hls4ml generated 
model, the segmentation output 
produced by QONNX is compared 
with the one produced by hls4ml C-
simulation.

1 2 3

We measure the image processing framerate and power consumption. The hls4ml 
deployment of neural networks outperforms Vitis AI, achieving 8.8 times higher pixels 
per second per watt on 50k parameters model. The performance gain is primarily due to 
hls4ml’s on-chip weight implementation, reducing power consumption and memory 
bottlenecks compared to fetching from DDR memory.

[1]: Detecting Marine pollutants and Sea Surface features with Deep learning in Sentinel-2 imagery

[2]: Sentinel-2 reference cloud masks generated by an active learning method

[4]: Real-time semantic segmentation on FPGAs for autonomous vehicles with hls4ml

Results [3] computed on ZCU102 SoC

UNet Segmentation Network 

hls4ml’s dataflow architecture 
requires FIFO buffers between 
each NN layer to synchronise 
logic blocks. The FIFO depth 
depends on the latency and 
initiation intervals of the layers. 
An undersized FIFO slows down 
inference, while an oversized one 
wastes resources. To minimise 
resource usage while avoiding 
compute stalls, FIFO depth 
optimisation [4] method 
reduces FIFO depths to the 
minimum needed for each layer. 
After optimisation, most FIFO depths are significantly smaller compared to the initial 
values.

Before After
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[3]: Edge SpAIce: Enabling Onboard Data Compression With Machine Learning On FPGAs
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Deploy

Input Image Segmentation mask

QONNX prediction hls4ml prediction

https://www.sciencedirect.com/science/article/pii/S0924271624000625
https://zenodo.org/records/13865939
https://zenodo.org/records/1460961
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