

Lattice Value in Aerospace & Defense

Hardware Security

Enhanced Reliability

Product Longevity

RELIABILITY

SWAP-C Optimized

SIZE

Extended Temperature

Ruggedized Packaging

New Features, Supply Chain Resilience and Fast Cadence of Solutions

Lattice Nexus Platform Capabilities

HIGH BANDWIDTH INTERFACES

- Multi-protocol Serdes up to 10G
- Supports 10GE, PCle Gen 3, DP/eDP, SLVS-EC, CoaXPress
- USB 3.2/2.0, MIPI DPHY, CPHY

FAST & FLEXIBLE I/O

- LVCMOS 0.9 to 3.3V
- LVDS / subLVDS up to 1.5Gbps
- SGMII, LVDS 7:1
- DDR3, LPDDR3/4

SECURITY BLOCK

- Bitstream encryption
- Bitstream authentication
- Hashing algorithms SHA, HMAC
- True Random Number Generator
- AES Encryption

LOW POWER FPGA FABRIC

- Built on 28nm FDSOI technology
- Up to 100K logic cells
- SEU resilience
- Ultrafast boot time
- Hardened SED/C Scrubber
- Always-on Options

Commercially Developed Technology – Flight Heritage

LATTICE

- Based on Rad Tolerant 28nm FDSOI technology
- Design and manufacture commercial devices
- Specially built FPGA lots for radiation testing

FRONTGRADE

- Tightly coupled interaction with Lattice manufacturing & source
- Radiation assurance, SnPb
- Augment SW with fault-tolerant IP libraries
- Device traceability

Lattice Avant Platform Capabilities

High Bandwidth SERDES

- Multi-protocol PHY Layer
- Hardened Link Layer

Low power FPGA Fabric

- Up to 630K system logic cells
- 36Mb Internal Memory
- 1800 DSPs with 8x8 Support
- Hardened SED/C Scrubber

Best-in-Class Security

- Post Quantum Ready
- AES256-GCM, ECC & RSA
- Anti-tamper & PUF / Unique ID
- Enhanced SCA Protection
- Rapid Secure Configuration

Fast & Flexible Programmable I/O

- LVCMOS 0.9 to 3.3V
- 1.8 Gbps MIPI D-PHY
- 1.6 Gbps LVDS
- SGMII, LVDS 7:1

External Memory Support

- DDR5, DDR4 & LPDDR4, DDR3L
- Hardened DDR PHY
- MRAM
- ECC

Note: Non-volatile memory as an option

Multi-Layered Approach to Creating Rad Tolerant FPGAs

Radiation Tolerance					
Parameter	Description	CertusPro (28nm)	Avant (16nm)	Units	
SEL	Heavy Ion Single Event Latch-up Immunity	80	80	MeV- cm2/mg	
SEU CRAM	U CRAM Single Event Upset in Configuration RAM		4E-8	Events/bit/ day ¹	
TID	Total lonizing Dose	>100K	>100K	kRad (si)	

Process Technology

- Commercial Scale
- Smaller Critical Active Region Decreases Probability of Single Event Upsets

IC Design

- Proven Foundry Design Rules
- Low Power, No Over-Voltage
- Thoughtful Memory Frame Architecture

Engagement

- Leverage Strength of Ecosystem
- Transparent and collaborative with Radiation Test Consortium
- Lattice + Industry + Agencies + Academia

Sensor Opportunities and Challenges

Sensors Are Diverse

- Networking
- Bandwidth scaling
- Parallelism

Data quality matters

- Deterministic
- Synchronous
- Provenance & Security

Fusion & collaboration

- Collaborative Algorithms
- Hard vs. Soft
- Real-Time

Conventional and Al Algorithms Co-exist to Propel Software Defined Sensors

Sensor Fusion & Machine Learning

Lattice Avant FPGA

- Sensor Fusion of Vision, Lidar and Radar
- Leverage onboard DSP, memory
- Interface & synchronization sensors
- On-board Processing & collaboration with built-in RISC-V
- Total power less than 1W
- Open source, Low latency, Low Power Open source

	Type of Sensor	Sensor Interface	System Interface to Host
7	Vision	MIPI CSI-2, SLVS-EC	GigE Vision, USB Vision, CAN, GMSL, Ethernet, PCIe, USB, I2C, SPI
-	Radar	MIPI CSI-2, LVDS, JESD204C	Ethernet, PCIe, USB, SPI
	Lidar	Ethernet	Ethernet, PCIe, USB
	Position	GPIO	Ethernet, Industrial Ethernet, PCIe, USB
10	IMU, Others	I2C, SPI, UART	Ethernet, PCIe, USB, I2C, SPI, UART

Hardware Overview

Fusion of VISION, LIDAR and RADAR with Machine Learning

Hardware in the Loop to Develop and Optimize Algorithms

- Implement, simulate and validate sensor specific data processing near sensor
- Fusion of sensors that complement each other
- Open source, less than 1us latency and ultra low power
- Transfer meta data to CPU /GPU over high bandwidth communications

Hardware-In-The-Loop Design/Verification Flow

Sensor Fusion to Higher Level Processing

Open source, scalable, low latency and high performance | EA now, broad availability in Q4 2024

