
Evaluation of Rust usage in space 
applications by developing BSP and RTOS 
targeting SAMV71

ADCSS - 2024

Filip Demski



2

Project objectives
Main goal: create a report that analyses how viable is introducing Rust into space 
domain

...but for that, we need something practical...

...that fits into tight budget of the project...

• Create a completely functional and usable RTOS, but focus on simplicity, and 
design that has space applications in mind

• Target SAMV71 devices, create a BSP that implements core peripherals + data 
acquisition ones for demonstration

ADCSS - 2024



3

Why Rust?

ADCSS - 2024

• Memory safety combined with high-performance
• Embedded programming in Rust gained a lot of 

traction
• Bare metal ARM and RISC-V support at high level
• Interoperability with C and Ada which allows to 

reuse existing components while introducing Rust 
• Growing interest from general embedded and 

system programming community
• Growing interest from companies like AdaCore or 

Ferrous Systems in providing qualified Rust 
toolchain for critical operations

• Fits for common critical software requirements 
like possibility to disable dynamic allocation



4

Rust Viability Report
• Examines

• language features
• strengths
• weaknesses
• the viability of Rust further use in the space applications

• Based on the outputs and conclusions coming from the RTOS and BSP...

• ...as well as on the thought of the developers.

• It’s available publicly, send me a message if you are interested!

ADCSS - 2024



5

Strong sides of Rust
• Dedication to memory safety

• well-designed ownership mechanism enforced during compilation
• compiler checks helps prevent common but hard to find bugs like data races

• High-performance capabilities
• language’s focus on zero-cost abstractions
• dynamic allocation is optional, precise but readable control over memory 

allocation

• Built-in documentation tests and examples
• Rust toolchain ensures that code examples stay up-to-date

ADCSS - 2024



6

Strong sides of Rust
• Active ecosystem and engaged community

• Rust continues to be the most-admired programming language in Stack 
Overflow survey

• Absence of legacy burdens, but including interoperability with C and Ada
• a way to use well-established, well-tested performance-critical libraries without 

having to rewrite everything from scratch

• Typestate pattern fits driver development, making hardware state 
management simpler

• very positive feedback from developer creating the drivers and very positive 
feedback from another developer using them

• Traits as an alternative to the object-oriented inheritance system
• useful for embedded development, readable but can be much faster

ADCSS - 2024



7

Weak sides of Rust
• Steep learning curve

• but long-time benefits, particularly in terms of enhanced code safety, justify the 
investment

• rising interest in Rust among developers which could mean more people already 
having the knowledge wanting and looking for jobs in this language

• Difficulties in changing approach when coming from C and similar languages
• Build times
• Tools and libraries aren’t as mature

• but that is changing year after year, especially embedded which gained a lot of 
traction recently

• Support for different hardware targets
• Availability and stability of language features

ADCSS - 2024



8

Aerugo – lightweight RTOS in Rust
• Designed with simplicity in mind

• Inspired by FreeRTOS

• Influenced by purely functional 
programming paradigm and architecture 
of transputers

• Implemented in form of a round-robin 
executor

• Aimed at easier potential ECSS 
qualification

ADCSS - 2024



9

Tasklets inside
Tasklets instead of traditional tasks based on threads

Tasklets are fine-grained units of computation, that execute a 
processing step in a finite amount of time.

• Share stack

• Avoid context switches

• Predictable concurrency patterns

• Scheduled for execution once all the data they require is 
available

• Cannot contain blocking operations waiting on products of 
other tasklets

• Cannot contain infinite loops

ADCSS - 2024



10

Data must flow

ADCSS - 2024



11

Data pipes
• Message queue

• Primary way to send data between tasklets

• Event
• Immediate – basically a void message
• Delayed – replaces the functionality that is traditionally served by timers

• Decrease coupling between tasklets
• Cancellable

• Boolean condition
• Represents some user-defined binary state of the system (readiness, 

availability, activation, etc.)
• Can be used as a ‘on-off switch’ of tasklet

ADCSS - 2024



12

SAMV71 BSP

ADCSS - 2024

Designed in line with the standards in the embedded Rust community
PAC – Peripheral Access Crate

HAL – Hardware Abstraction Layer



13

RTOS <–> hardware integration

ADCSS - 2024



14

Integration with new platform is as easy as 1-2-3

How to: Run a `Hello, World!` demo on 
Aerugo

1. Grab BSP for your desired platform

2. Implement AerugoHAL trait (it’s just 3 
functions!)

3. Compile and start

ADCSS - 2024



15

Aerugo in practice

ADCSS - 2024

• running on SAMV71Q21 ARM Cortex-M MCU
• accelerometer-gyroscope instrument, containing a LSM6DSO 

sensor connected via SPI
• UART C&C TC/TM interface to the host computer
• data sent between SAMV71 board and host computer is 

packetized using CCSDS encapsulation



16

Everything is available on the open-source license

ADCSS - 2024

https://github.com/n7space/aerugo



17

Way forward
• Asynchronous executor for multithreading systems

• Further development of SAMV71 BSP or creation of BSP for different MCUs

• Tooling to increase the usability of the system

• Aerugo qualification according to ECSS standard

We are actively looking for practical applications and cooperation in Aerugo next steps 
of development.

ADCSS - 2024



Thank you for your attention

Filip Demski
fdemski@n7space.com

Wojciech Olech
wojciech.olech@n7space.com

ADCSS - 2024

mailto:fdemski@n7space.com
mailto:wojciech.olech@n7space.com

	Evaluation of Rust usage in space applications by developing BSP and RTOS targeting SAMV71
	Project objectives
	Why Rust?
	Rust Viability Report
	Strong sides of Rust
	Strong sides of Rust
	Weak sides of Rust
	Aerugo – lightweight RTOS in Rust
	Tasklets inside
	Data must flow
	Data pipes
	SAMV71 BSP
	RTOS <–> hardware integration
	Integration with new platform is as easy as 1-2-3
	Aerugo in practice
	Everything is available on the open-source license
	Way forward
	Slide Number 18

