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Project objectives
Main goal: create a report that analyses how viable is introducing Rust into space 
domain

...but for that, we need something practical...

...that fits into tight budget of the project...

• Create a completely functional and usable RTOS, but focus on simplicity, and 
design that has space applications in mind

• Target SAMV71 devices, create a BSP that implements core peripherals + data 
acquisition ones for demonstration
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Why Rust?
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• Memory safety combined with high-performance
• Embedded programming in Rust gained a lot of 

traction
• Bare metal ARM and RISC-V support at high level
• Interoperability with C and Ada which allows to 

reuse existing components while introducing Rust 
• Growing interest from general embedded and 

system programming community
• Growing interest from companies like AdaCore or 

Ferrous Systems in providing qualified Rust 
toolchain for critical operations

• Fits for common critical software requirements 
like possibility to disable dynamic allocation
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Rust Viability Report
• Examines

• language features
• strengths
• weaknesses
• the viability of Rust further use in the space applications

• Based on the outputs and conclusions coming from the RTOS and BSP...

• ...as well as on the thought of the developers.

• It’s available publicly, send me a message if you are interested!
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Strong sides of Rust
• Dedication to memory safety

• well-designed ownership mechanism enforced during compilation
• compiler checks helps prevent common but hard to find bugs like data races

• High-performance capabilities
• language’s focus on zero-cost abstractions
• dynamic allocation is optional, precise but readable control over memory 

allocation

• Built-in documentation tests and examples
• Rust toolchain ensures that code examples stay up-to-date
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Strong sides of Rust
• Active ecosystem and engaged community

• Rust continues to be the most-admired programming language in Stack 
Overflow survey

• Absence of legacy burdens, but including interoperability with C and Ada
• a way to use well-established, well-tested performance-critical libraries without 

having to rewrite everything from scratch

• Typestate pattern fits driver development, making hardware state 
management simpler

• very positive feedback from developer creating the drivers and very positive 
feedback from another developer using them

• Traits as an alternative to the object-oriented inheritance system
• useful for embedded development, readable but can be much faster

ADCSS - 2024



7

Weak sides of Rust
• Steep learning curve

• but long-time benefits, particularly in terms of enhanced code safety, justify the 
investment

• rising interest in Rust among developers which could mean more people already 
having the knowledge wanting and looking for jobs in this language

• Difficulties in changing approach when coming from C and similar languages
• Build times
• Tools and libraries aren’t as mature

• but that is changing year after year, especially embedded which gained a lot of 
traction recently

• Support for different hardware targets
• Availability and stability of language features
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Aerugo – lightweight RTOS in Rust
• Designed with simplicity in mind

• Inspired by FreeRTOS

• Influenced by purely functional 
programming paradigm and architecture 
of transputers

• Implemented in form of a round-robin 
executor

• Aimed at easier potential ECSS 
qualification
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Tasklets inside
Tasklets instead of traditional tasks based on threads

Tasklets are fine-grained units of computation, that execute a 
processing step in a finite amount of time.

• Share stack

• Avoid context switches

• Predictable concurrency patterns

• Scheduled for execution once all the data they require is 
available

• Cannot contain blocking operations waiting on products of 
other tasklets

• Cannot contain infinite loops
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Data must flow
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Data pipes
• Message queue

• Primary way to send data between tasklets

• Event
• Immediate – basically a void message
• Delayed – replaces the functionality that is traditionally served by timers

• Decrease coupling between tasklets
• Cancellable

• Boolean condition
• Represents some user-defined binary state of the system (readiness, 

availability, activation, etc.)
• Can be used as a ‘on-off switch’ of tasklet
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SAMV71 BSP
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Designed in line with the standards in the embedded Rust community
PAC – Peripheral Access Crate

HAL – Hardware Abstraction Layer
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RTOS <–> hardware integration
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Integration with new platform is as easy as 1-2-3

How to: Run a `Hello, World!` demo on 
Aerugo

1. Grab BSP for your desired platform

2. Implement AerugoHAL trait (it’s just 3 
functions!)

3. Compile and start
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Aerugo in practice
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• running on SAMV71Q21 ARM Cortex-M MCU
• accelerometer-gyroscope instrument, containing a LSM6DSO 

sensor connected via SPI
• UART C&C TC/TM interface to the host computer
• data sent between SAMV71 board and host computer is 

packetized using CCSDS encapsulation
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Everything is available on the open-source license
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https://github.com/n7space/aerugo
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Way forward
• Asynchronous executor for multithreading systems

• Further development of SAMV71 BSP or creation of BSP for different MCUs

• Tooling to increase the usability of the system

• Aerugo qualification according to ECSS standard

We are actively looking for practical applications and cooperation in Aerugo next steps 
of development.
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Thank you for your attention

Filip Demski
fdemski@n7space.com

Wojciech Olech
wojciech.olech@n7space.com
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