
{OPEN}

Artificial Intelligence applied 
to code repair after code 

static analysis verification
18th ESA Workshop on Avionics, Data, Control and Software 

Systems ~ ADCSS2024
Ainhoa López (TAS) / David de Fitero (UAH)



{OPEN}

Evolution of APR Methods and LLM 
Advances

o Traditional APR Methods
– Heuristic-based: Uses predefined rules to generate patches (Saha et al., 2017)
– Constraint-based: Reduces search space using logical restrictions (Xiong et al., 2017)
– Template-based: Applies predefined correction patterns (J. Jiang et al., 2018)

o Modern ML Approaches
– Frame APR as a translation task using RNNs, LSTMs, and Transformers

o Vulnerability Repair
– General-purpose tools (e.g., Angelix (Mechtaev et al., 2016), concolic program repair (Shariffdeen et al., 2021)).
– Security-specific methods (deductive reasoning, inductive reasoning, and static analysis) 

o LLM developments in APR
– LLMs with completion engines improve patch generation accuracy (Wei et al., 2023)
– Fine-tuned LLMs surpass traditional APR tools (Huang et al., 2023; Silva et al., 2024; Xia et al., 2023)

2



{OPEN}

Followed Approach
o Datasets

– CommitPackFt capturing real-world bug fixes
– SonarQube rules dataset based on code quality rules

o Fine-tuning
– QLoRA (Dettmers et al., 2023): Combines LoRA (Low-Rank Adaptation) with 4-bit quantization for resource-

efficient fine-tuning
– NEFTune (Jain et al., 2023): Adds noise to embeddings for improved performance

o Refinement after initial results
– Expanded training data

• Synthetic dataset to augment coverage of SonarQube rules, providing more diverse training examples
• Added 650 manual corrections aligned with MISRA guidelines

– Model upgrade - Llama 3 - 8B

3



{OPEN}

Description of the Datasets
o CommitPackFT

– Filtered version of the CommitPack dataset
– Contains high-quality commit messages resembling natural language instructions
– Paired with before and after code corresponding to the commit

o Synthetic Dataset
– Generated using Llama 3 - 70B model
– Seed examples provided with code before/after changes based on SonarQube rules
– Model generated new samples following similar patterns from seeds

o SonarQube Dataset
– Extracted from SonarQube analysis
– Aligned with MISRA C standards
– Includes human-generated fixes for detected issues
– Smallest dataset - upsampled for balance

4



{OPEN}

Training Process Overview
o Data Preprocessing

– Input
• Commit message or SonarQube rule
• Source code with line numbers

– Output 
• Line range of modification and the new lines 

to replace them

o Model & Techniques
– CodeLlama / Llama 3 - 8B
– Supervised Fine-tuning with QLoRA/LoRA and 

NEFTune

o Hardware
– Trained on a NVIDIA H100

5



{OPEN}

Approach diagram

6



{OPEN}

Refinement techniques
o Tailored contextual input

– Use tree-sitter to reduce model input
– Adjust context size based on the specific rule

o Additional Instructions
– Adds specific instructions to certain rules to improve repair efficacy and ensure adherence to coding

standards

o Simultaneous Fixing
– Utilizes batch inference to accelerate processing when multiple repair rules are provided

o Quantization with EETQ
– Int8 quantization reduces memory use with minimal accuracy loss

o Inference Engine
– Uses Text Generation Inference (TGI) for fast and efficient model inference

7



{OPEN}

Experiments
Manual human evaluation for the results provided for the project CO2M product ICU.

o Method: CodeLlama, fine-tuned on CommitPackFT dataset + own dataset and refined model Llama3

o Input dataset to the model: 21 components of CO2M HDSW ICU:
– JSON with source code (in the example: “01_00d_irqmp.c”)
– JSON with header file
– JSON structure with information on the issues detected: rule ID, rule description, line of code where issue 

is detected

o Output dataset: JSON structure with rule description and fixed code (source code and header file)

8



{OPEN}

Experiments
o Precision metrics

– Results broken down for each rule: comparison CodeLlama vs Llama3
• Variation in correction effectiveness

 CodeLlama showed that the model’s ability to handle different rules varied considerably.
 Llama3 increased the proper and partial corrections but still shows variability in its correction 

ability

9

0 20 40 60 80 100

Typedefs that indicate size and signedness should be used in place…

Magic numbers should not be used

Pointer and reference parameters should be "const" if the…

Unions should not be used

Correct this initializer to initialize all elements

Limited dependence should be placed on operator precedence

Remove this hazardous cast

Values of different "enum" types should not be compared

Functions should not contain too many return statements

Reserved identifiers and functions in the C standard library should…

Introduce a new variable instead of reusing the parameter

CodeLlama correction percentage by MISRAC 2012 Rule

0 10 20 30 40 50 60 70 80 90 100

Typedefs that indicate size and signedness should be used in place…

Magic numbers should not be used

Pointer and reference parameters should be "const" if the…

Unions should not be used

Correct this initializer to initialize all elements

Limited dependence should be placed on operator precedence

Remove this hazardous cast

Values of different "enum" types should not be compared

Functions should not contain too many return statements

Reserved identifiers and functions in the C standard library should…

Introduce a new variable instead of reusing the parameter

Llama3 correction percentage by MISRAC 2012 Rule



{OPEN}

Experiments
o Precision metrics

– Results broken down for each rule: comparison CodeLlama vs Llama3
• Variation in correction effectiveness

 CodeLlama showed that the model’s ability to handle different rules varied considerably.
 Llama3 increased the proper and partial corrections but still shows variability in its correction 

ability

10

0 10 20 30 40 50 60 70 80 90 100

Magic numbers should not be used

Limited dependence should be placed on operator precedence

Remove this hazardous cast

Functions should not contain too many return statements

Reserved identifiers and functions in the C standard library should not
be defined or declared

CodeLlama correction percentage by MISRAC 2012 Rule

0 10 20 30 40 50 60 70 80 90 100

Magic numbers should not be used

Limited dependence should be placed on operator precedence

Remove this hazardous cast

Functions should not contain too many return statements

Reserved identifiers and functions in the C standard library should
not be defined or declared

Llama3 correction percentage by MISRAC 2012 Rule



{OPEN}

Experiments
o Precision metrics: Variation in correction effectiveness

• Improvement of Llama3 wrt CodeLlama
Example: “Magic numbers should not be used”

11

CodeLlama partial solution Llama3 correct solution

0 10 20 30 40 50 60

Magic numbers should not be used

CodeLlama correction percentage by MISRAC 2012 
Rule

0 10 20 30 40 50 60

Magic numbers should not be used

Llama3 correction percentage by MISRAC 2012 Rule

Proper correction Partial correction

Incorrect correction No correction



{OPEN}

Experiments
o Precision metrics: False positive and code context

• Still a weakness in the refined model
Example:”Pointer and reference parameters should be ’const’ if the corresponding object is not modified“: 
92% of corrections were incorrect.

12



{OPEN}

Experiments
o Precision metrics: overall results

– Fully accurate corrections: increased up to 40% -> reduces manual workload and saves developer’s time
– Partial corrections: slightly decrease to 15,9% -> provides useful insights to guide developers in resolving

complex issues
– Incorrect corrections: dropped to 18,1% -> increased model reliability and less time spent reviewing errors

13



{OPEN}

Final Deployment

14



{OPEN}

Conclusions
o Still not a full replacement for developers

– Despite its improvements, the model cannot yet replace developers entirely. Human oversight is still
essential for more intricate, context-specific coding decisions and fine-tuning.

o Better code quality and compliance
– The system’s improved alignment with coding standards like MISRA ensures that the code is not only more

reliable but also compliant with industry regulations. This contributes to long-term maintainability and
reduces the risk of defects.

o Increased confidence in automated suggestions
– The sharp decrease in incorrect corrections means developers can rely more on the model’s suggestions,

reducing time spent double-checking or correcting faulty outputs, thus streamlining the entire review
process.

o Support for complex issue resolution
– While full corrections have increased, the value of partial corrections lies in guiding developers through

complex or edge-case issues, providing a foundation upon which they can make finer adjustments with
confidence.

15


