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Evolution of APR Methods and LLM 
Advances

o Traditional APR Methods
– Heuristic-based: Uses predefined rules to generate patches (Saha et al., 2017)
– Constraint-based: Reduces search space using logical restrictions (Xiong et al., 2017)
– Template-based: Applies predefined correction patterns (J. Jiang et al., 2018)

o Modern ML Approaches
– Frame APR as a translation task using RNNs, LSTMs, and Transformers

o Vulnerability Repair
– General-purpose tools (e.g., Angelix (Mechtaev et al., 2016), concolic program repair (Shariffdeen et al., 2021)).
– Security-specific methods (deductive reasoning, inductive reasoning, and static analysis) 

o LLM developments in APR
– LLMs with completion engines improve patch generation accuracy (Wei et al., 2023)
– Fine-tuned LLMs surpass traditional APR tools (Huang et al., 2023; Silva et al., 2024; Xia et al., 2023)
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Followed Approach
o Datasets

– CommitPackFt capturing real-world bug fixes
– SonarQube rules dataset based on code quality rules

o Fine-tuning
– QLoRA (Dettmers et al., 2023): Combines LoRA (Low-Rank Adaptation) with 4-bit quantization for resource-

efficient fine-tuning
– NEFTune (Jain et al., 2023): Adds noise to embeddings for improved performance

o Refinement after initial results
– Expanded training data

• Synthetic dataset to augment coverage of SonarQube rules, providing more diverse training examples
• Added 650 manual corrections aligned with MISRA guidelines

– Model upgrade - Llama 3 - 8B
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Description of the Datasets
o CommitPackFT

– Filtered version of the CommitPack dataset
– Contains high-quality commit messages resembling natural language instructions
– Paired with before and after code corresponding to the commit

o Synthetic Dataset
– Generated using Llama 3 - 70B model
– Seed examples provided with code before/after changes based on SonarQube rules
– Model generated new samples following similar patterns from seeds

o SonarQube Dataset
– Extracted from SonarQube analysis
– Aligned with MISRA C standards
– Includes human-generated fixes for detected issues
– Smallest dataset - upsampled for balance
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Training Process Overview
o Data Preprocessing

– Input
• Commit message or SonarQube rule
• Source code with line numbers

– Output 
• Line range of modification and the new lines 

to replace them

o Model & Techniques
– CodeLlama / Llama 3 - 8B
– Supervised Fine-tuning with QLoRA/LoRA and 

NEFTune

o Hardware
– Trained on a NVIDIA H100
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Approach diagram
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Refinement techniques
o Tailored contextual input

– Use tree-sitter to reduce model input
– Adjust context size based on the specific rule

o Additional Instructions
– Adds specific instructions to certain rules to improve repair efficacy and ensure adherence to coding

standards

o Simultaneous Fixing
– Utilizes batch inference to accelerate processing when multiple repair rules are provided

o Quantization with EETQ
– Int8 quantization reduces memory use with minimal accuracy loss

o Inference Engine
– Uses Text Generation Inference (TGI) for fast and efficient model inference
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Experiments
Manual human evaluation for the results provided for the project CO2M product ICU.

o Method: CodeLlama, fine-tuned on CommitPackFT dataset + own dataset and refined model Llama3

o Input dataset to the model: 21 components of CO2M HDSW ICU:
– JSON with source code (in the example: “01_00d_irqmp.c”)
– JSON with header file
– JSON structure with information on the issues detected: rule ID, rule description, line of code where issue 

is detected

o Output dataset: JSON structure with rule description and fixed code (source code and header file)
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Experiments
o Precision metrics

– Results broken down for each rule: comparison CodeLlama vs Llama3
• Variation in correction effectiveness

 CodeLlama showed that the model’s ability to handle different rules varied considerably.
 Llama3 increased the proper and partial corrections but still shows variability in its correction 

ability
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Experiments
o Precision metrics: Variation in correction effectiveness

• Improvement of Llama3 wrt CodeLlama
Example: “Magic numbers should not be used”
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Experiments
o Precision metrics: False positive and code context

• Still a weakness in the refined model
Example:”Pointer and reference parameters should be ’const’ if the corresponding object is not modified“: 
92% of corrections were incorrect.
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Experiments
o Precision metrics: overall results

– Fully accurate corrections: increased up to 40% -> reduces manual workload and saves developer’s time
– Partial corrections: slightly decrease to 15,9% -> provides useful insights to guide developers in resolving

complex issues
– Incorrect corrections: dropped to 18,1% -> increased model reliability and less time spent reviewing errors
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Final Deployment
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Conclusions
o Still not a full replacement for developers

– Despite its improvements, the model cannot yet replace developers entirely. Human oversight is still
essential for more intricate, context-specific coding decisions and fine-tuning.

o Better code quality and compliance
– The system’s improved alignment with coding standards like MISRA ensures that the code is not only more

reliable but also compliant with industry regulations. This contributes to long-term maintainability and
reduces the risk of defects.

o Increased confidence in automated suggestions
– The sharp decrease in incorrect corrections means developers can rely more on the model’s suggestions,

reducing time spent double-checking or correcting faulty outputs, thus streamlining the entire review
process.

o Support for complex issue resolution
– While full corrections have increased, the value of partial corrections lies in guiding developers through

complex or edge-case issues, providing a foundation upon which they can make finer adjustments with
confidence.
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