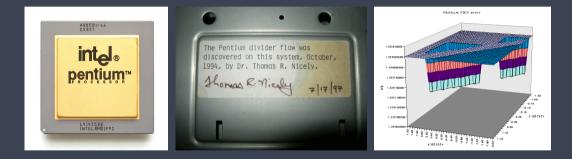
Data-Coverage for Category-A Flight Software

Andoni Arregi, Fabian Schriever, Joan Roig

1. Motivation

2. Data in Flight Software

3. Tools


4. Conclusions

Motivation

Pentium FDIV Bug

Sometimes software bugs are related to data...

In fact, about 30% of the software bugs in aerospace software; 15% configurable data, 15% input data (Prokop, 2023)

Why does Europe need Category-A Qualified Software?

Because we had, have, and will have human-rated missions.


ATV

Orion ESM

I-Hab & ERM

Space-Rider

MRS – ERO

ADRIOS

ECSS Software Qualification Requirements

ECSS requirements are very **instruction oriented** but almost **nothing** is required **for data**.

Instruction vs Data

Although computer programs are made of instructions and data, they are not treated the same from a qualification point of view.

We just have more metrics and tools focused on instructions...

Data in Flight Software

We have data **within** the flight software...

000007e0	01 00	00 0	00	9d	e3	bf	a0	7£	ff	ff	c7	01	00	00	00	
000007£0	90 10	9 20	03	7f	ff	ff	ea	01	00	00	00	82	10	00	08	
00000800	b0 10	9 00	01	81	e8	00	00	81	c3	еO	08	01	00	00	00	
00000810	82 1	3 c0	00	40	00	00	02	9e	10	40	00	9d	e3	bf	38	8
00000820	92 0'	7 bf	98	7£	ff	fe	d6	90	10	00	18	80	a2	20	00	
00000830	06 80	00 0	0e	05	00	00	Зc	c2	07	bf	a8	82	08	40	02	@.
00000840	05 00	00 0	08	80	a0	40	02	02	80	00	06	b0	10	20	01	
00000850	40 00	00 0	0c	b0	10	20	00	82	10	20	19	c2	22	00	00	@
00000860	81 c'	7 e0	08	81	e8	00	00	40	00	00	06	b0	10	20	00	
00000870	82 10	9 20	09	c2	22	00	00	81	c7	e0	08	81	e8	00	00	
00000880	9d e:	3 bf	a0	7£	ff	ff	3e	01	00	00	00	81	c7	e0	08	>
00000890	91 e	B 00	08	00	00	00	0a	00	00	00	0b	00	00	00	0c	
000008a0	00 00	9 00	0d	00	00	00	0e	00	00	00	05	ff	ff	ff	ff	

Program object-code

We have data **within** the flight software...

000007e0	01	00	00	00	9d	e3	bf	a0	7f	ff	$\mathbf{f}\mathbf{f}$	c7	01	00	00	00	
000007£0	90	10	20	03	7 f	\mathbf{ff}	\mathbf{ff}	ea	01	00	00	00	82	10	00	08	
00000800	b0	10	00	01	81	e8	00	00	81	c3	e0	08	01	00	00	00	
00000810	82	13	c0	00	40	00	00	02	9e	10	40	00	9d	e3	bf	38	@@8
00000820	92	07	bf	98	7f	\mathbf{ff}	fe	d6	90	10	00	18	80	a2	20	00	
00000830	06	80	00	0e	05	00	00	Зc	c2	07	\mathbf{bf}	a8	82	08	40	02	@.
00000840	05	00	00	08	80	a0	40	02	02	80	00	06	b0	10	20	01	
00000850	40	00	00	0c	b0	10	20	00	82	10	20	19	c2	22	00	00	@
00000860	81	c7	e0	08	81	e8	00	00	40	00	00	06	b0	10	20	00	
00000870	82	10	20	09	c2	22	00	00	81	c7	e0	08	81	e8	00	00	
00000880	9d	e3	bf	a0	7f	$\mathbf{f}\mathbf{f}$	ff	3e	01	00	00	00	81	с7	e0	08	
00000890	91	e8	00	08	00	00	00	0a					00				
000008a0	00	00	00	0d	00	00	00	0e	00	00	00	05	ff	ff	ff	ff	

Instructions within the object-code

Data in Flight Software

We have data **within** the flight software...

000007e0	01	00	00	00	9d	e3	\mathtt{bf}	a0	7 f	ff	ff	c7	01	00	00	00	
000007±0	90	10	20	03	7f	ff	ff	ea	01	00	00	00	82	10	00	08	
00000800	b0	10	00	01	81	e8	00	00	81	c3	еO	08	01	00	00	00	
00000810	82	13	c0	00	40	00	00	02	9e	10	40	00	9d	e3	bf	38	@@8
00000820	92	07	\mathtt{bf}	98	7£	ff	fe	d6	90	10	00	18	80	a2	20	00	
00000830	06	80	00	0e	05	00	00	3c	c2	07	bf	a8	82	08	40	02	@.
00000840	05	00	00	08	80	a0	40	02	02	80	00	06	b0	10	20	01	
00000850	40	00	00	0c	b0	10	20	00	82	10	20	19	c2	22	00	00	@
00000860	81	c7	e0	08	81	e8	00	00	40	00	00	06	b0	10	20	00	
00000870	82	10	20	09	c2	22	00	00	81	c7	e0	08	81	e8	00	00	
00000880	9d	e3	bf	a0	7£	ff	ff	3e	01	00	00	00	81	c7	e0	08	
00000890	91	e8	00	08	00	00	00	0a	00	00	00	0b	00	00	00	0c	
000008a0	00	00	00	0d	00	00	00	0e	00	00	00	05	$\mathbf{f}\mathbf{f}$	ff	ff	ff	

Data within the object-code

We also have a lot of data **around** the flight software, affecting its behavior.

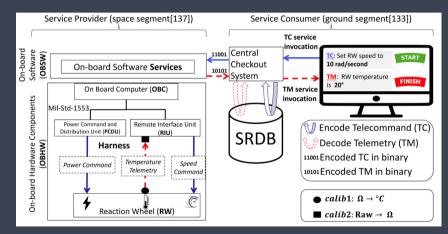


Figure taken from Satellite Reference Databases scope and data organization: A literature review, Malik Khalfallah; inspired by Olivier Notebaert

Tools

The Tools We Developed

Work carried out under ESA contract N. 4000143017/23/NL/AS/nh

The tools

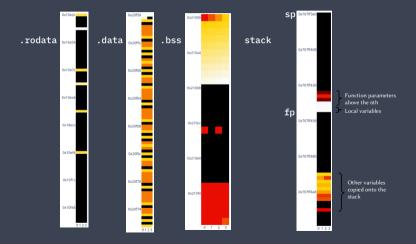
- · All open-source based (Alternatively proprietary tools can be used)
- Assist in the following tasks:
 - Assess data-coverage on a function unit-test basis
 - Show data-coverage projected on the source-code (as done by gcov/lcov/gcovr)
 - Assess data-usage of data-related memory areas/sections (on an executable basis)

The tools will be published as open source tools once completed at: https://gitlab.com/gtd-gmbh.

Where 20 unit-tests give complete statement and decision coverage:

	Filename	Line Coverage 🗢		Functions 🗢		Branches 🗘	
example_w_exof.c		100.0 %	54 / 54	100.0 %	3/3	94.4 %	17/18
58 20 63 20 64 20 65 20 64 20 65 20 66 20 67 20 68 20 69 [+ + + 1 70 [+ + + 1 71 [+ + 1 72 [+ + 1	<pre>blb202_ut z { (f = a}]; double z = A, a = 1h22; bb604_u u = (f = a + big]; ifbu1tin_expect(wobd85061880w] uxe8x64938 ifbu1tin_expect(wobd85061880w], 1) return ifbu1tin_expect(wobd8708180w, 1) return ifbu1tin_expect(wobd8708180w, 1) return ifw > 0 Erf(wo52) return ; // x = nam static court float in] =wu1tin_inf().</pre>	P03737b0cd5541, 0.dff*P0427*de450, *055002d5550, 0.dff*0e0457*de11, %054762012d5550, 0.dff*0e0457*de11, %05476201498612(0,0) %0547620149862148, *05476502e45501, 0.dff*0201897461, *05476502e45501, 0.dff*0201897461, *0.6665 1540, 0)]{ 1540, 0)]{					
73 2							
75 [• •]: 3 76 : 2 77 : 2 78 : 2	<pre>: double y = 0x1p-149 + (z + 0x1.9d1d9fccf477p+ y =builtin_fmax(y, 0x1p-151); ; float r = y;</pre>	6)*0x1.71547652b82edp-150;					
80 81 82 83 84	<pre>: } : if(t.u>0x42b17217u){ float r = 0x1p127f * 0x1p127f; if(r>0x1,ffffep127f) ;//errmo = ERANGE;</pre>						
65 8 87 8 89 8 91 8 92 1 93 1 96 1 96 1 96 1 96 1 97 9	: } : } : double is = big - u.f, h = s + is; : double h2 = sh, r = tb[u.dGh3f] = ([u.uvsb]ec52] : double h2 = sh, r = ([d]0] + tb[1]) = h24(b2] : if(.uvlither.expect(u + h, 0)]{ : const double inh = bu.7154765p0, incl = bs; double h = (lurher + is) + ilcl*ts; s = w.f,]	<pre>* h*(b[3])))*sv.f; 1.5c17f0bbbe88p-31; h2 = h*h, w = s*h;</pre>					

Assessing Data-Coverage of a Function



Data-coverage is by far not complete:

35 36	#pragma SIDC FENV_ACCESS UN
36	typedef union {float f; uint32 t u;} b32u32 u;
38	typedef union {double f; uint52_t u;} b52u52_u; typedef union {double f; uint64 t u;} b64u64 u;
39	Gpeder unten (double), utiloa_c d, boadda_d,
40	float cr expf(float x){
41	static const double c[] =
42	(0x1.62e42fefa39efp-1, 0x1.ebfbdff82c58fp-3, 0x1.c6b08d702e0edp-5,
43	0x1.3b2ab6fb92e5ep-7, 0x1.5d886e6d54203p-10, 0x1.430976b8ce6efp-13);
44	static const double b[] =
45	(1, 0x1.62e42fef4c4e7p-1, 0x1.ebfd1b232f475p-3, 0x1.c6b19384ecd93p-5);
46	static const uint64 t tb[] =
47	(0x3ff000000000000000), 0x3ff02c9a3e778061L, 0x3ff059b0d3158574L, 0x3ff0874518759bc8L,
48	0x3ff0b5586cf9890fl, 0x3ff0e3ec32d3d1a2 0x3ff11301d0125b51 0x3ff1429aaea92de0
49	0x3ff172b83c7d517bl, 0x3ff1a35beb6fcb75l, 0x3ff1d4873168b9aal, 0x3ff2063b88628cd6l,
50	0x3ff2387a6e7562381, 0x3ff26b4565e27cddl, 0x3ff29e9df51fdee11, 0x3ff2d285a6e4030bl,
51	0x3ff306fe0a31b715l, 0x3ff33c08b26416ffl, 0x3ff371a7373aa9cbl, 0x3ff3 a7db34e59ff7l
52	0x3ff3dea64c123422l, 0x3ff4160a21f72e2al, 0x3ff44e086061892dl, 0x3ff486a2b5c13cd0l,
	0x3ff4bfdad5362a27l, 0x3ff4f9b2769d2ca7l, 0x3ff5342b569d4f82l, 0x3ff56f4736b527dal,
54	0x3ff5ab07dd4854291, 0x3ff5e76f15ad21481, 0x3ff6247eb03a55851, 0x3ff66238825522251,
55	0x3ff6a09e667f3bcdl, 0x3ff6dfb23c651a2fl, 0x3ff71f75e8ec5f74l, 0x3ff75feb564267c9l,
56	0x3ff7a11473eb61871, 0x3ff7e2f336cf4e62l, 0x3ff82589994cce13l, 0x3ff868d99b4492edl,
57	0x3ff8ace5422aa0dbl, <u>0x3ff8f1ae99157736l</u> , 0x3ff93737b0cdc5e5l, 0x3ff97d829fde4e50l,
58	0x3ff9c49182a3f 090 l, <mark>0x3ffa0c667b5de565l</mark> , 0x3ffa5503b23e255dl, 0x3ffa9e6b5579fdbfl,
59	0x3ffae89f995ad3adl, 0x3ffb33a2b84f15fbl, 0x3ffb7f76f2fb5e47l, 0x3ffbcc1e904bc1d2l,
60	0x3ffc199bdd85529cl, 0x3ffc67f12e57d14bl, <u>0x3ffcb720dcef9069l</u> , 0x3ffd072d4a07897cl,
61	0x3ffd5818dcfba487l, 0x3ffda9e603db3285l, <mark>0x3ffdfc97337b9b5fl</mark> , 0x3ffe502ee78b3ff6l
62	0x3ffea4afa2a490dal, 0x3ffefa1bee615a27l, 0x3fff50765b6e4540l, 0x3fffa7c1819e90d8l);
63	const double iln2 = 0x1.71547652b82fep+0, big = 0x1.8p46;
64	$b32u32_u t = \{.f = x\};$ double z = x, a = 11n2*z;
65 66	double $z = x$, $a = 1 \ln 2^{*} z$; b64u64 u u = {.f = $a + big$ };
66 67	<pre>Db4ub4_u u = {.t = a + big}; uint32 t ux = t.u<<1;</pre>
68	if (builtin expect(ux>0x859d1d80u ux<0x6f93813eu, 0)){
69	if(builtin_expect(ux=0x6f93813eu, 1)) return 1.0 + z*(1 + z*0.5);
70	$if(\underline{w}) = 0 \times f(w<24) \{ // x \ inf or nan$
71	if(ux > 0xf(u < 2u) + v(u < u)) if $u = 0$ and $u < u < u < u < u < u < u < u < u < u$
72	static control tip [] = { builtin inff(), 0.01};
73	return in[t,u>3]]: // x = +-inf
74	
75	if(t.u>0xc2ce8ec0u){
76	double $y = (0.1p + 149 + (z + 0.1.9d)d9fccf477p+6)*0x1.71547652b82edp+150;$
77	y = builtin fmax(y, 0x1p-151);
78	float r = v;
79	if(r==0.0f) ;//errno = ERANGE;
RA	return r:

Assessing Data Usage on a Whole Executable

The tools enable the logging and visualization of data accesses to memory sections and areas of interest:

Tools

Conclusions

Conclusions

Lack of Data-Coverage Requirements

- Data-coverage is as meaningful for Cat-A software as instruction coverage.
- We have a lack of data verification and coverage requirements in ECSS.
- Data elements affecting flight-software behavior are not properly validated for Cat-A software.

Method and Tools for Data-Coverage

• We propose some methods and tools to ensure that data affecting the flight software behavior gets exercised by tests.

Backup

Assessing Data-Coverage of a Function

Backup gtd

This is an extract of a implementation of the expf() function (core-math library):

```
static const double c[] = {0x1.62e42fefa39efp-1. 0x1.ebfbdff82c58fp-3. 0x1.c6b08d702e0edp-5.
                        0x1.3b2ab6fb92e5ep-7, 0x1.5d886e6d54203p-10, 0x1.430976b8ce6efp-13};
static const double b[] = {1, 0x1.62e42fef4c4e7p-1, 0x1.ebfd1b232f475p-3, 0x1.c6b19384ecd93p-5};
0x3ff0b5586cf9890fl. 0x3ff0e3ec32d3d1a2l. 0x3ff11301d0125b51l. 0x3ff1429aaea92de0l.
                           0x3ff172b83c7d517bl, 0x3ff1a35beb6fcb75l, 0x3ff1d4873168b9aal, 0x3ff2063b88628cd6l,
                           0x3ff2387a6e7562381. 0x3ff26b4565e27cddl. 0x3ff29e9df51fdee11. 0x3ff2d285a6e4030bl.
                           0x3ffae89f995ad3adl. 0x3ffb33a2b84f15fbl. 0x3ffb7f76f2fb5e47l. 0x3ffbcc1e904bc1d2l.
                           0x3ffc199bdd85529cl. 0x3ffc67f12e57d14bl. 0x3ffcb720dcef9069l. 0x3ffd072d4a07897cl.
                           0x3ffd5818dcfba487l. 0x3ffda9e603db3285l. 0x3ffdfc97337b9b5fl. 0x3ffe502ee78b3ff6l.
                           0x3ffea4afa2a490dal. 0x3ffefa1bee615a27l. 0x3fff50765b6e4540l. 0x3fffa7c1819e90d8l}:
const double iln2 = 0x1.71547652b82fep+0. big = 0x1.8p46:
if ( builtin expect(ux>0x859d1d80u || ux<0x6f93813eu, 0)){</pre>
```

Assessing Data Usage on a Whole Executable

// // DATA

// // FUNCTIONS