
Data-Coverage for Category-A
Flight Software

Andoni Arregi, Fabian Schriever, Joan Roig

Content

1. Motivation

2. Data in Flight Software

3. Tools

4. Conclusions

1

Motivation

Pentium FDIV Bug Motivation

Sometimes software bugs are related to data...

In fact, about 30% of the software bugs in aerospace software; 15%
configurable data, 15% input data (Prokop, 2023)

2

European Need for Category-A Software Motivation

Why does Europe need Category-A Qualified Software?
Because we had, have, and will have human-rated missions.

ATV Orion ESM I-Hab & ERM

Space-Rider MRS – ERO ADRIOS
3

ECSS Software Qualification Requirements Motivation

ECSS requirements are very instruction oriented but almost nothing is required
for data.
Instruction vs Data
Although computer programs are made of instructions and data, they are not
treated the same from a qualification point of view.

We just have more metrics and
tools focused on instructions...

4

Data in Flight Software

Bits, Instructions, and Data Data in Flight Software

We have data within the flight software...

Program object-code
5

Bits, Instructions, and Data Data in Flight Software

We have data within the flight software...

Instructions within the object-code
5

Bits, Instructions, and Data Data in Flight Software

We have data within the flight software...

Data within the object-code
5

Other Data around Flight Software Data in Flight Software

We also have a lot of data around the flight software, affecting its behavior.

Figure taken from Satellite Reference Databases scope and data organization: A literature review, Malik Khalfallah; inspired by Olivier Notebaert

6

Tools

The Tools We Developed Tools

Work carried out under ESA contract N. 4000143017/23/NL/AS/nh
The tools
• All open-source based (Alternatively proprietary tools can be used)

• Assist in the following tasks:
• Assess data-coverage on a function unit-test basis
• Show data-coverage projected on the source-code (as done by
gcov/lcov/gcovr)

• Assess data-usage of data-related memory areas/sections (on an
executable basis)

The tools will be published as open source tools once completed at:
https://gitlab.com/gtd-gmbh.

7

https://gitlab.com/gtd-gmbh

Assessing Data-Coverage of a Function Tools

Where 20 unit-tests give complete statement and decision coverage:

The missing coverage for one of the decisions is deactivated code in round to nearest
8

Assessing Data-Coverage of a Function Tools

Data-coverage is by far not complete:

9

Assessing Data Usage on a Whole Executable Tools

The tools enable the logging and visualization of data accesses to memory
sections and areas of interest:

.rodata .data .bss stack

sp

fp ->

Other variables
copied onto the
stack

Local variables

Function parameters
above the 6th

10

Conclusions

Conclusions Conclusions

Lack of Data-Coverage Requirements
• Data-coverage is as meaningful for Cat-A software as instruction

coverage.
• We have a lack of data verification and coverage requirements in ECSS.
• Data elements affecting flight-software behavior are not properly

validated for Cat-A software.

Method and Tools for Data-Coverage
• We propose some methods and tools to ensure that data affecting the

flight software behavior gets exercised by tests.

11

Backup

Assessing Data-Coverage of a Function Backup

This is an extract of a implementation of the expf() function (core-math
library):
float cr_expf(float x){

static const double c[] = {0x1.62e42fefa39efp-1, 0x1.ebfbdff82c58fp-3, 0x1.c6b08d702e0edp-5,
0x1.3b2ab6fb92e5ep-7, 0x1.5d886e6d54203p-10, 0x1.430976b8ce6efp-13};

static const double b[] = {1, 0x1.62e42fef4c4e7p-1, 0x1.ebfd1b232f475p-3, 0x1.c6b19384ecd93p-5};
static const uint64_t tb[] = {0x3ff0000000000000l, 0x3ff02c9a3e778061l, 0x3ff059b0d3158574l, 0x3ff0874518759bc8l,

0x3ff0b5586cf9890fl, 0x3ff0e3ec32d3d1a2l, 0x3ff11301d0125b51l, 0x3ff1429aaea92de0l,
0x3ff172b83c7d517bl, 0x3ff1a35beb6fcb75l, 0x3ff1d4873168b9aal, 0x3ff2063b88628cd6l,
0x3ff2387a6e756238l, 0x3ff26b4565e27cddl, 0x3ff29e9df51fdee1l, 0x3ff2d285a6e4030bl,
...
0x3ffae89f995ad3adl, 0x3ffb33a2b84f15fbl, 0x3ffb7f76f2fb5e47l, 0x3ffbcc1e904bc1d2l,
0x3ffc199bdd85529cl, 0x3ffc67f12e57d14bl, 0x3ffcb720dcef9069l, 0x3ffd072d4a07897cl,
0x3ffd5818dcfba487l, 0x3ffda9e603db3285l, 0x3ffdfc97337b9b5fl, 0x3ffe502ee78b3ff6l,
0x3ffea4afa2a490dal, 0x3ffefa1bee615a27l, 0x3fff50765b6e4540l, 0x3fffa7c1819e90d8l};

const double iln2 = 0x1.71547652b82fep+0, big = 0x1.8p46;
b32u32_u t = {.f = x};
...
uint32_t ux = t.u<<1;
if (__builtin_expect(ux>0x859d1d80u || ux<0x6f93813eu, 0)){

...
}

12

Assessing Data Usage on a Whole Executable Backup
//
// DATA

const uint32_t constant_rodata[74] = { 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83 }; // in .rodata

const uint8_t const_size = 74; // in .rodata
const uint8_t not_init_size = 120; // in .rodata
static char uninitialized_data[120]; // in .bss
uint32_t size1 = 40; // in .data
uint16_t size2 = 24; // in .data
uint32_t not_constant_data[74] = { 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,

30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83 }; // in .data

//
// FUNCTIONS

int32_t init();
int32_t foo1(uint32_t index1, uint16_t index2, uint32_t index3,

uint32_t index4, uint8_t index5, uint32_t index6);
int32_t foo2(uint32_t tmp1, uint32_t tmp2, uint32_t tmp3, uint32_t tmp4,

uint32_t tmp5, uint32_t tmp6, uint32_t tmp7, uint32_t tmp8);

13

	Motivation
	Data in Flight Software
	Tools
	Conclusions
	Backup

