

PANGU version v8: Event-based sensor simulation for space applications in real-time

M.Sanchez-Gestido (ESA/TEC-SAG)

23/10/2024

ESA UNCLASSIFIED - For Official Use

European Space Agency

- What is PANGU?
- How does it work
- Examples / videos
- Functionalities (existing / new)
- Event-Based Cameras simulation / "Image" (event) data set generation
- PANGU in the Vision-Based Navigation (VBN) roadmap
- PANGU in the Eco-system of Image Renderers

ESA UNCLASSIFIED - For Official Use

M. Sanchez-Gestido (ESA/TEC-SAG) / ADCSS-2024 | 23/10/2024 | Slide 2

PANGU: What is PANGU?

esa

• Synthetic Image Generation tool:

•Allows for generation of a Digital Elevation Model (DEM, i.e. terrain) from scratch

•Accepts (opens and converts for further model modification/refinement) a variety of File formats

- Used in Vision-Based Navigation simulations (open-loop and closed-loop, e.g. HW-in-the-Loop (HIL)) in real-time and faster than real-time (SW-in-the-Loop (SIL))
- Radiometrically calibrated
- Physically representative parameters (space context, camera, sensor, etc)
- Validated over the years
- User community in European Space industry (free of charge for ESA projects)

ESA UNCLASSIFIED - For Official Use

M. Sanchez-Gestido (ESA/TEC-SAG) / ADCSS-2024 | 23/10/2024 | Slide 3

_ II ⊾ :: ■ + II ■ ≝ _ II II _ _ : = :: II II _ II _ . . .

PANGU: How are PANGU models created from DEMs (Digital Elevation Models) CS2

ESA UNCLASSIFIED - For Official Use

M. Sanchez-Gestido (ESA/TEC-SAG) / ADCSS-2024 | 23/10/2024 | Slide 4

*

How PANGU works: SW development / SW licensing /

- Agile SW development (intermediate branches / versions if needed)
- PANGU website: <u>https://pangu.software</u>

•Simplified SW license request

•Access to SW (current and previous versions)

•NCR/SPR report

PANGU

Planet and Asteroid Natural Scene Generation Utility

HOME	NEWS	WIKI	LICENSE REQUEST	LOG IN

Home

Welcome to the PANGU portal. This site contains resources for users of the PANGU software. You must <u>log in</u> with an existing account before you can <u>download</u> PANGU, <u>report</u> a problem or manage your <u>licence keys</u>. Users working on ESA projects can get an account by completing the licence key <u>request form</u>: a login will be created if accepted. Non-ESA users can contact <u>STAR-Dundee</u> to purchase PANGU with technical support. The <u>Wiki</u> pages can be accessed without logging in.

A lunar surface generated by PANGU with Hapke BRDF

PANGU is a powerful set of tools for modelling the surfaces of planetary bodies such as

M. Sanchez-Gestido (ESA/TEC-SAG) / ADCSS-2024 | 23/10/2024 | Slide 5

ESA UNCLASSIFIED - For Official Use

How PANGU works: enhancing a Low Resolution model

PANGU v5 example scenario:

- Starts with a low-res OBJ model→ICQ (InterConnected Quadrilaterals)
- Enhance the resolution
- Add craters
- Generate and apply a synthetic albedo map
- Define boulders with different BRDFs (BiDirectional Reflectance Distribution Function, modelling optical properties of the surface)
- Define a relative flight path
- Generate a video

M. Sanchez-Gestido (ESA/TEC-SAG) / ADCSS-2024 | 23/10/2024 | Slide 6

ESA UNCLASSIFIED - For Official Use

How PANGU works: enhancing a Low Resolution model

ESA UNCLASSIFIED - For Official Use

M. Sanchez-Gestido (ESA/TEC-SAG) / ADCSS-2024 | 23/10/2024 | Slide 7

*

How PANGU works: MRO/HiRISE image of Deimos

PANGU simulation of MRO/HiRISE image of Deimos (also to test variability / sensitivity of Vision-Based Navigation algorithms to albedo maps)

ESA UNCLASSIFIED - For Official Use

MRO/HiRISE image of Deimos

M. Sanchez-Gestido (ESA/TEC-SAG) / ADCSS-2024 | 23/10/2024 | Slide 8

How PANGU works: Interoperatibility with other Image renderer SW

WaveFront (OBJ) IN Blender

Wire-frame (left) and solid Hapke view (right)

ESA UNCLASSIFIED - For Official Use

M. Sanchez-Gestido (ESA/TEC-SAG) / ADCSS-2024 | 23/10/2024 | Slide 9

How PANGU works: Camera model and Synthetic Image Generation of Artificial objects (spacecrafts) CSA

ESA UNCLASSIFIED - For Official Use

M. Sanchez-Gestido (ESA/TEC-SAG) / ADCSS-2024 | 23/10/2024 | Slide 10

How PANGU works: Overview of new features in PANGU v6 (thermal Infrared, communication errors, etc)

M. Sanchez-Gestido (ESA/TEC-SAG) / ADCSS-2024 | 23/10/2024 | Slide 11

How PANGU works: Camera and sensor effects Reset and read-out smear

ESA UNCLASSIFIED - For Official Use

M. Sanchez-Gestido (ESA/TEC-SAG) / ADCSS-2024 | 23/10/2024 | Slide 12

+

· = II ▶ = = + II = ≝ = II II = = = = II ■ II = II ₩ ⊨

PANGU examples: Asteroid albedo maps (Itokawa comparison)

PANGU Itokawa model with synthetic albedo compared with real AMICA image

ESA UNCLASSIFIED - For Official Use

M. Sanchez-Gestido (ESA/TEC-SAG) / ADCSS-2024 | 23/10/2024 | Slide 13

PANGU example: Malapert Moon landing

ESA UNCLASSIFIED - For Official Use

M. Sanchez-Gestido (ESA/TEC-SAG) / ADCSS-2024 | 23/10/2024 | Slide 14

PANGU example: Ryugu / Hayabusa2

ESA UNCLASSIFIED - For Official Use

M. Sanchez-Gestido (ESA/TEC-SAG) / ADCSS-2024 | 23/10/2024 | Slide 15

÷

· = ■ ► = = + ■ + ■ = ≔ = ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

PANGU example: New Horizons/Lorri approach Pluto

ESA UNCLASSIFIED - For Official Use

M. Sanchez-Gestido (ESA/TEC-SAG) / ADCSS-2024 | 23/10/2024 | Slide 16

· _ II 🛌 :: 🖛 + II 💻 🔚 _ II II = _ :: II 🖬 📥 🔯 II = :: II 🗰 💥 🕍

PANGU example MP4 video overlaid from PANGU

ESA UNCLASSIFIED - For Official Use

M. Sanchez-Gestido (ESA/TEC-SAG) / ADCSS-2024 | 23/10/2024 | Slide 17

PANGU: Example "Too many asteroids"

ESA UNCLASSIFIED - For Official Use

M. Sanchez-Gestido (ESA/TEC-SAG) / ADCSS-2024 | 23/10/2024 | Slide 18

+

PANGU: Functionalities (existing/new)

- PANGU developed over the years (15+) in visible
- Thermal infrared introduced in version v6
- Real-time (for HW-in-the-Loop simulations) Thermal Infrared synthetic image generation was need to validate other developments (HW/SW) in MultiSpectral Cameras, for instance:

•MuLaN (Multispectral camera Engineering Model, GSTP ESA Project)

•Use for Vision-Based Navigation as application for instance of Thermal Infrared camera under development by Jena-Optronik (JOP)

- PANGU used to emulate Plenoptic cameras
- New functionalities in version v8 following user requests (depth of field for rover navigation) and to support on-going innovative activities (potentially disruptive technologies):
 - Event-Based cameras
 - Advanced Concept Team (ACT): <u>https://www.esa.int/gsp/ACT/projects/event_camera/</u>
 - Event Camera for Planet Landing (in collaboration with ETH Zürich)
 - GAN/Deep Learning: To improved realism of Moon crater rim aging

16 32 48 64 80 96 112 128

ESA UNCLASSIFIED - For Official Use

M. Sanchez-Gestido (ESA/TEC-SAG) / ADCSS-2024 | 23/10/2024 | Slide 19

PANGU: Event-based cameras simulation

- Event-based camera pixels independently respond to changes in brightness (from reference value to the current one) for the intensity arriving to each pixel, with instantaneous response.
- Advantages:
 - Temporal resolution
 - •Dynamic range over the complete Field-of-View
 - •Pre-processing and selection of relevant changes in image for pose estimation (Vision-Based Navigation), computationally efficient
- Difficulties (operational/simulation):
 - •Noise filtering (tuneable thresholds)
 - •Development/adaptation of algorithms for pose estimation (change of paradigm)
- Temporal representation of the signal (asynchronous) is not trivial, behaviour of electronics is dependent on manufacturer's implementation
- Intensity triggering representation of signal: Logarithmic/other (triggering function could result in other types of intensity change functions depending on the camera's design and the intended application)
- Noise models in event-based cameras (spatial and temporal structure) not necessarily the same as for conventional frame cameras
- Other previous work to be used for cross-comparison/cross-validation (ETH_Zurich, Hu's toolbox (v2e), etc)
 ESA UNCLASSIFIED For Official Use
 M. Sanchez-Gestido (ESA/TEC-SAG) / ADCSS-2024 | 23/10/2024 | Slide 20

= II 🛌 == ++ II 💻 🔚 == II II II == == 🖼 🛶 🔯 II == == 🗮 🗰

PANGU in the Eco-System of Synthetic Image Renderers

- Several other image renderers developed by other companies (SurRender (Airbus))
 (TAS), ASTOS CameraSimulator (ASTOS), etc) with complementary functionalities
- Benchmarking for cross-validation and evaluate them against reference scenarios (TEC-SAG activities)
- PANGU validated over years with strong community of users
- PANGU provided free-of-charge to ESA projects (HERA, Argonaut, MuLaN (selected for thermal Infrared validation), etc)
- PANGU commercialization agreement with STAR-Dundee in niche market. PANGU licences issued worldwide (North America, Japan, South Korea, India, South Africa, etc) but mostly limited to national space agencies and large aerospace organisations
- New functionalities (thermal Infrared, Event-Based cameras, etc), for identified and potential needs in projects, after feasibility tested at proof of concept, need a push for initial technology development / industrialization
- PANGU contributes to Verification & Validation (existing and new camera technology in different types of missions)

 Functionalities like real-time Thermal Synthetic Image Generation not trivial, gradually improved for realism and specially for difficult scenarios and conditions (transients in eclipse with different material behaviour, etc) ESA UNCLASSIFIED - For Official Use

= II 🛌 :: 🖛 🕂 II 🗯 🚝 = II II = = = :: 🖬 🛶 💷 II = :: II 🖽 💥 📹

Questions / comments /suggestions?

Contact: Manuel.Sanchez.Gestido@esa.int

ESA UNCLASSIFIED - For Official Use

M. Sanchez-Gestido (ESA/TEC-SAG) / ADCSS-2024 | 23/10/2024 | Slide 23

+