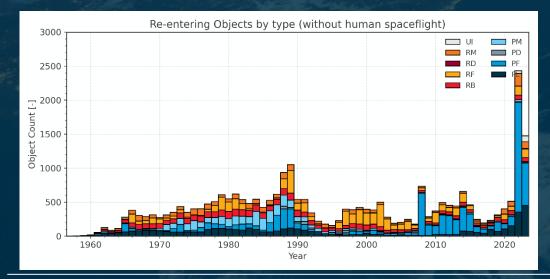


6th International Space Debris Re-entry Workshop

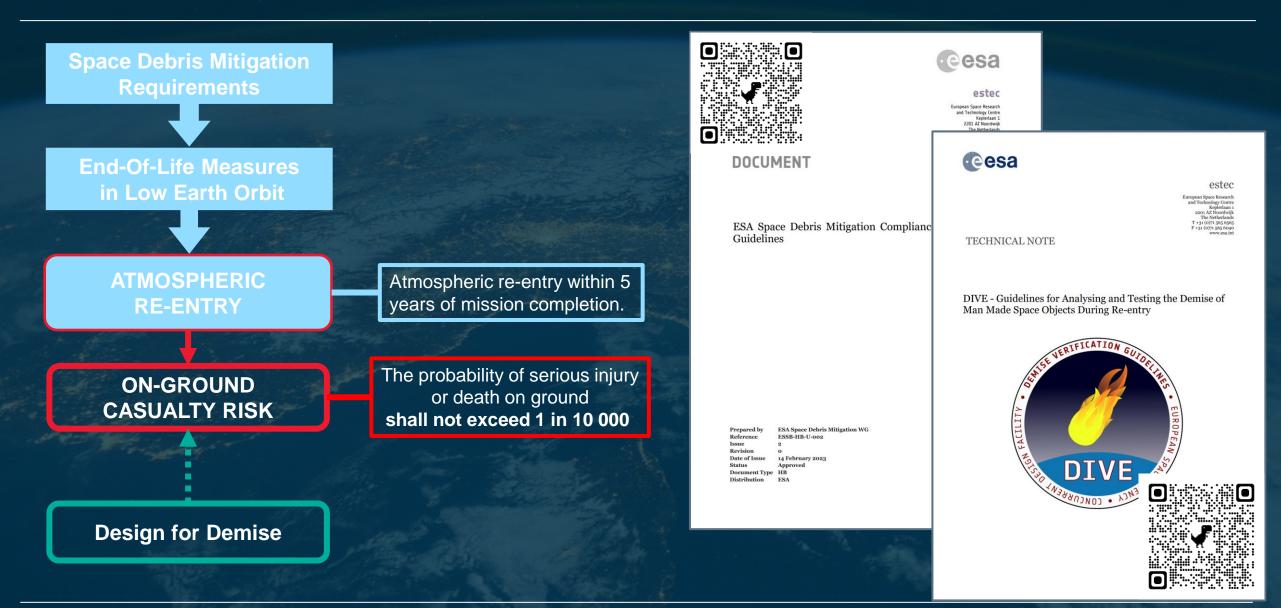
ESA Space Debris Office

15/01/2025

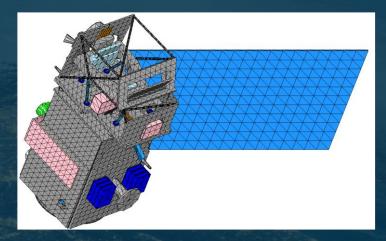

ESA UNCLASSIFIED - For ESA Official Use Only

Context and historical background

Apollo 11 Service Module


ATV-1 Jules Verne

Space Debris Mitigation Requirements

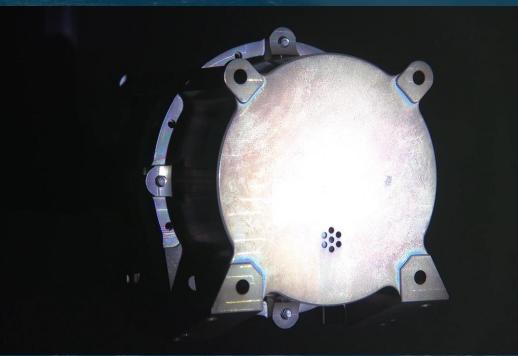


Towards a validated re-entry model

From a satellite model to a validated re-entry simulation

Challenges

- Full-scale high-fidelity multi-physics simulations (including aerodynamic, thermal, structural and failure behaviour) is beyond computational capabilities.
- Simplified aero(thermo)dynamic and structural failure models need validation.
- Limited number of aerodynamic shapes and material properties well characterised on-ground (~ 10 qualified materials; ~5 simple shapes qualified aerothermodynamics models).
- Fragments reaching the ground only partially predictable.

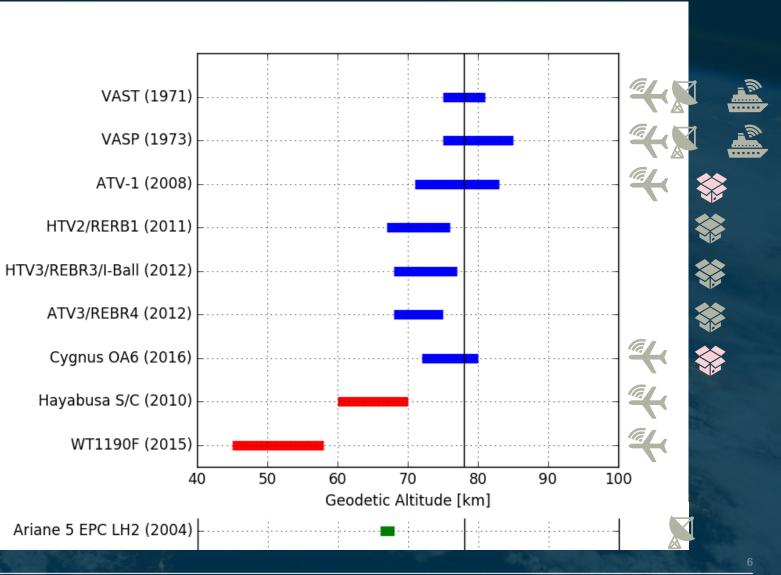

💳 🗖 📕 🛨 💳 🚛 📕 🏣 🔜 📲 🔚 🚟 🚟 🚟 🔤 🖓 🚬 📲 👫 🛨 🖬 🖅 🐨 📰 🐙 🔸 The European space agency

Towards a validated re-entry model

Challenges of on-ground characterisation and testing

- Completely representative environmental conditions (aerodynamic and aerothermal) difficult to achieve.
- Limited to small-scale or component-level testing.
- Components are small systems themselves.
- Testing at scale of realistic structures (e.g. jointed sandwich panel structures) is not feasible on-ground.

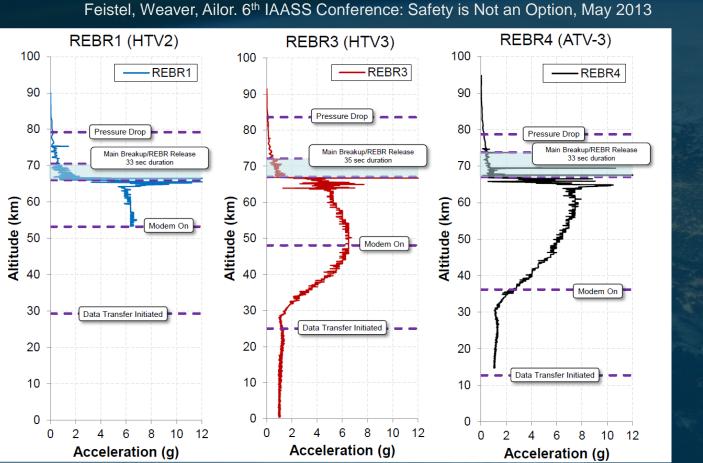
Spacecraft Re-entry observations



Airborne observation campaign

Ground-based observation

In-situ measurements & sensors


Tracking ships

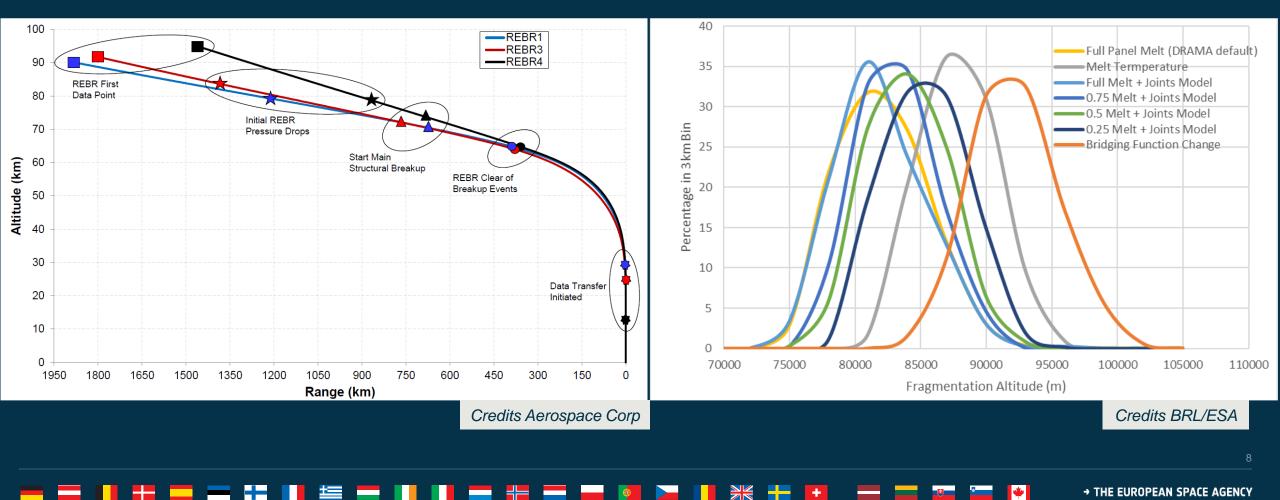
Previous in-situ measurements

Comparison of Re-entry Breakup Measurements for Three atmospheric Re-entries.

i-Ball (HTV-3) re-entry image Credits JAXA. https://iss.jaxa.jp/en/kiboexp/theme/iball/index.html.

No direct measurements of the demising spacecraft! Lack comparison data to validate understanding

Determining the "truth" of S/C demise



<u>+</u>___

GROUND-TEST COMPATIBLE PREDICTIONS

+

Determining the "truth" of S/C demise

Data measurements and transmission

Conditions representative of full re-entry

Fragmentation and behaviour of materials modelling

Topical Re-entry Prediction Workshops (at ESA)

Previous re-entry workshops (https://conference.sdo.esoc.esa.int/proceedings/list):

- Re-entry predictions during the last days prior to entry (1985)
- The Re-entry of Salyut-7 / Kosmos-1686 (1991)
- MIR Deorbit (2001)
- A Holistic View and New Avenues (2018)
- Preparing for the Race Downwards (2020, virtual):
 - How to transition from uncertainty assessment to operational products when it comes to re-entry predictions and orbital lifetimes?
 - Which multi-physics driven break-up processes produce predictions which can be verified on a macroscopic level to cause first fragmentation?

6th ISDRW objectives

1. Take stock of community activity

- Modelers, operators, ground testing facilities, observers
- Measurements, model validation, re-entry physics

2. Facilitate and further improve exchanges

- Understanding others' needs
- Strengthening the re-entry community

3. Understand community data needs

- Build datasets
- Enable data sharing mechanisms and policies
- Identify desirable missing data

💳 📕 🚼 💳 💶 🚼 📕 🏣 🔜 📕 🗮 💳 🗮 ன ன 🖓 🛌 🖬 🖬 💶 🐜 🖛 🖓

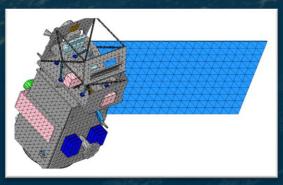
- Some data is already available online (e.g. OPS-SAT)
- Some data can be made available through projects with ESA (including OSIP, which has an open call at the moment) (e.g. AVUM DRAMA model)
- Some data can be shared, but needs pre-processing (e.g. housekeeping data for Aeolus)
- Which data is most useful? Which data would make most sense to have online/available?

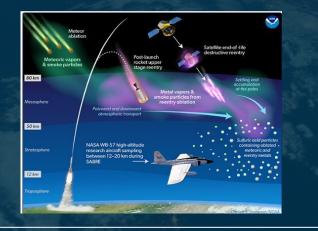
Agenda

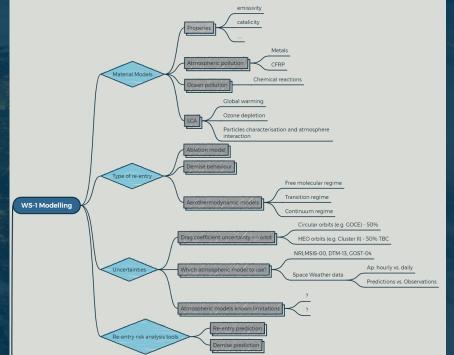
Which data is available?

09:00 – 10:00 Welcome & Introduction

10:00 - 10:30	Aeolus and GOCE SOM (Viet Duc Tran)	
10:30 – 10:45	ERS-2, AVUM, ATV-1 (SDO)	
10:45 – 11:00	OPS-Sat (Tim Oerther) and BEESAT (Anton Grosse)	
11:00 - 11:15	Cluster II SOM (Bruno Sousa)	
11:15 – 11:45	Coffee break	
11:45 – 13:00	WS-1 Modelling	CONTRACTOR .
13:00 – 14:00	Lunch break	020
14:00 – 15:00	WS-2 Science of Re-Entry	
15:00 – 15:15	Near term opportunities (Stijn Lemmens)	
15:15 – 16:15	WS-3 Observation campaigns / Ground facilities testing	
16:15 – 16:45	Coffee break	
16:45 – 17:30	Workshop wrap-up	
17:30 – 18:00	Final remarks and future steps	

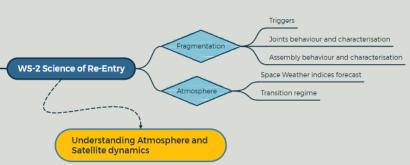



What to expect from WS-1: Modelling



Based on the State of the Art to discuss about known and identified gaps:

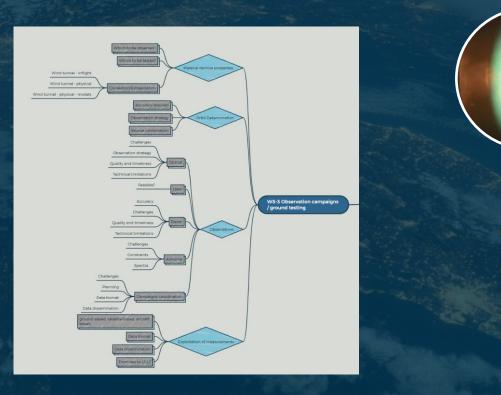
- \triangleright Material models: properties, atmospheric pollution, ocean pollution, LCA
- Type of re-entry <-> ablation model \triangleright
- Uncertainties characterisation per type of orbit <-> atmospheric models
- Risk analysis tools re-entry and demise characterisation differences



What to expect from WS-2: Science of Re-Entry

Re-entry phenomena characterisation and big picture understanding:

- Fragmentation process trigger: small vs.
 big SCs, type of re-entry...etc
- Joints and assembly behaviour and characterisation
- Atmosphere characterisation: space weather indices forecast
- Transition regime between free molecular and continuum aerothermodynamics


What to expect from WS-3: Observations & Ground Testing

What to test and how to observe:

- Observation techniques and coordination
 - Optical passive telescopes
 - Tracking and imaging radars
 - Airborne campaigns
- Orbit determination from observations measurements
 - Required precision for re-entry predictions
 - Required number of measurements

- Wind-tunnel tests and what can address
 - Material characterisation
 - Small length scale demise characterisation

IADC re-entry campaign

✤ The IADC was formally established in 1993 to:

- o promote the exchange of information on space debris research activities between member space agencies,
- o to facilitate opportunities for cooperation in space debris research,
- o to review the progress of on-going cooperative activities,
- o and to identify debris mitigation options.
- The IADC Terms of Reference request that at least one annual re-entry prediction exercise shall be conducted to verify the functionality of prediction tools.
 - Full re-entry campaign or re-entry test campaign
- Campaign administration, web-based front-end hosting and maintenance by ESA/ESOC by Space Debris Office
 - o Exchange of orbital elements, predictions, observations,... within members in an easy and secure way

eesa

Inter-Agency Space Debris Coordination Committee

💳 🗖 📕 🛨 🧰 🚍 📲 📕 ±≡ 🚥 📕 📲 💳 ∺ 🔤 🛶 🚳 🛏 📲 🗮 🖬 🖬 ன 🖛 🖬 🗰 ன ன ன ன ன ன ன ன ன