

6th International Space Debris Re-entry Workshop – Near Term Opportunities

ESA Space Debris Office

15/01/2025

ESA UNCLASSIFIED – For ESA Official Use Only

→ THE EUROPEAN SPACE AGENCY

Two weeks into 2025

Space Junk Crashed Into a Kenyan Village and Everyone Is Confused (Getty Image)

Falling Space Debris Incident Reported in Ethiopia (Ethiopian Space Science Society)

Qantas South Africa flights delayed by falling debris from SpaceX rockets, airline says

Delays on Sydney-Johannesburg route after advice from US government over debris from SpaceX rocket re-entry in southern Indian Ocean

the guardian business

A forecast for 2025

If we let everything go and don't add any more objects to the space environment, what is coming down this year?

Туре	Count	Mass (ton)
Debris	646	-
Starlink (*)	444	152
Small (<100kg) Satellites	492	11
Larger Satellites (**)	82	82
Rockets	65	113

(*) They tend to be operational

(**) Excluding the International Space Station

→ THE EUROPEAN SPACE AGENCY

A forecast for 2025

If we let everything go and don't add any more objects to the space environment, what is coming down this year above 1 ton?

3	7880
1	5800.0
3	14600.0
1	1240.0
5	14960.0
1	2740.0
2	7000.0
1	1534.0
5	8635.0
7	28000.0
1	4500.0
1	1490.0
1	1500.0
1	5000.0
	3 1 3 1 5 1 2 1 5 7 1 1 1 1 1

Tselina-D and other Cosmos ELINT	13	24774
Feng Yun 3G	1	3850.0
Genesis	2	2720
Landsat 4	1	1938.0
Meteor 1-31	1	1500.0
Resurs-P No. 2	1	6392.0
Rumba (Cluster 2/FM5)	1	1186.0
Shenzhou 18 orbital module (Guidao Cang)	1	1842.0
Shi Jian 19 orbital module	1	2150.0
Suzaku (Astro-E2)	1	1700.0
TES	1	1108.0
Xinjishu Yanzheng 7	1	5000.0
Yaogan Weixing	2	4000.0

*

A forecast for 2020's and 2030's

"All models are wrong, but some are useful"

Future environment model:

- Propagation of an initial population with inclusion of new objects
- Detect and mode conjunctions between objects
- Perform post-mission disposal (PMD) actions
- Vary the conditions stochastically (Monte Carlo)

Uncertainties in future environment model:

Initial debris environment

. . .

- Evolution of space weather activity
- Evolution of the upper atmosphere
- Future launch traffic and space technology evolution
- Quality of mitigation measures adopted
- Deliberate actions endangering the environment

Forecasting of the re-entry traffic is a "collateral" output of the analysis

6

A forecast for 2020's and 2030's

Rocket Bodies 20000 Spacecraft 15000 5000 5000 2040 2080 2120 Re-entry (year)

Yearly statistical forecasts are available to the community!

Cluster-II 1/3/4

FM1 2025-10-22

FM3 2026-08-31

FM4 2026-09-01

DRACO – Controlled re-entry in 2027

→ THE EUROPEAN SPACE AGENCY

Predictable opportunities

####