

# FRONTGRADE Gaisler

GR765:

A Radiation-Hardened, Fault-Tolerant Octa-Core SoC with Integrated eFPGA for Next-Generation Space Avionics

**EDHPC 2025** 



# Agenda



| 01 | Introduction           | 04 | Authenticated boot and security features |
|----|------------------------|----|------------------------------------------|
| 02 | Processor system       | 05 | Conclusions                              |
| 03 | Integrated peripherals | 03 | Conclusions                              |





# Introduction

PUBLIC



### **GR765 - Introduction**

GR765 is a new processor component for space developed by Frontgrade Gaisler on STMicroelectronics 28nm technology platform.

Successor to GR740 as the high-end processor product in Frontgrade Gaisler's portfolio.

Development supported by European Space Agency ARTES, TDE, GSTP, and NAVISP EL2 programmes, SNSA and Frontgrade funding.





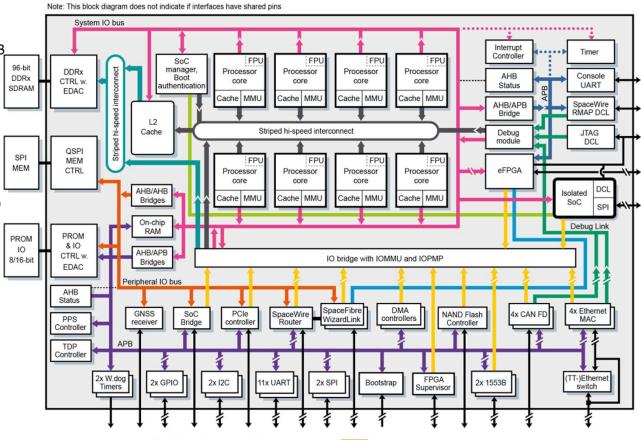




# **GR765** – Key features

| ARCHITECTURE  | Octa-core SPARC v8 / RISC-V RV64GCH                                                      |
|---------------|------------------------------------------------------------------------------------------|
| QUALIFICATION | ESCC Generic Specification No. 9030                                                      |
| PACKAGE       | PBGA 1752 (45x45 mm, 1mm ball pitch)                                                     |
| TID           | 50 krad(Si) (guaranteed by platform)<br>100 krad(Si) (testing/screening to be performed) |
| SEL IMMUNITY  | 60 MeV*cm <sup>2</sup> /mg @125°C                                                        |
| TECHNOLOGY    | STM 28nm FDSOI                                                                           |
| SUPPLIES      | Core: 1.0 V<br>I/O: 1.2 V 3.3 V                                                          |
| FREQUENCY     | 800 MHz, delivering 2600 DMIPS/core                                                      |
| POWER         | 10 W @ 25°C (TBC)                                                                        |










# **GR765 – Block diagram**

- Fault-tolerant octa-core architecture
  - LEON5FT SPARC V8 or NOEL-V RV64GCH
  - each core with SIMD extensions, FPU, and MMU, 32 KiB per core L1 cache
  - connected via multi-port interconnect
- 4 MiB L2 cache, 512-bit cache line, 8-ways
- DDR2/3/4
  - 96-bit interface with dual x8 device correction capability
  - 80-bit interface with x8 device correction capability
  - 72-bit interface with error detection capability (SECDED)
- 8/16-bit PROM/IO interface
- (Q)SPI and NAND memory controller interfaces
- eFPGA 30k LUT
- Built-in GNSS receiver for (GPS and Galileo)
- Hardware authenticated boot (hybrid scheme with ECDSA, ML-DSA)
- Isolated SoC / HSM for HW RoT, Secure Boot, Crypto
- DMA controllers



noel-V



# **GR765** – Raw numbers comparison with **GR740**





| Metric                | GR740                                         | GR765                                          | Change |
|-----------------------|-----------------------------------------------|------------------------------------------------|--------|
| CPU performance       | 4-core, single-issue, 250MHz                  | 8-core, dual-issue, 800 MHz                    | 12X    |
| RAM capacity          | SDRAM PC100, 512 MiB                          | DDR4-1600, 16 GiB                              | 32X    |
| RAM bandwidth         | 64 x 100Mbps = 6.4 Gbps                       | 64 x 1600 Mbps = 100 Gbps                      | 16X    |
| IO bandwidth (in+out) | PCI 32x33M = 1Gbps<br>SpW 8x2x200M = 3.2 Gbps | PCle 8x2x4G = 64 Gbps<br>SpFi 4x6.25 = 25 Gbps | 27X    |





# Processor system

PUBLIC



### **Instruction Set Architectures**

#### Why RISC-V?

- Hardware and software potential for future space applications: A new class of processors requires a modern architecture
- Enabling new technologies by standardization
  - Hypervisor support
  - Vector extension, ...
- Growing base of 3<sup>rd</sup> party ecosystem:
  - Toolsets
  - Libraries, engines etc.
- Attractive to talent entering the space domain
- Influx of know-how by talent entering the space domain



#### Why SPARC?

- Existing base of space proven HW and SW designs
- Mature ecosystem for today's space applications, e.g. qualified OS
- Accumulated development knowhow in the industry
- Software backward compatible with existing LEON devices

#### **GR765 provides RISC-V and SPARC**

- Both architectures are needed by the industry
- Faster time-to-market for RISC-V while continuing SPARC – ease transition between the two architectures
- Minimal silicon overhead sharing of resources on chip. User selects CPU (LEON5FT or NOEL-VFT), device cannot operate with both at the same time.







### **GR765 – Processor cores**

# LEONS SPARC

- 32-bit SPARC V8 processor core
- Improved performance over LEON3 & LEON4
  - In-order dual-issue pipeline
- Improved fault tolerance (FT) from SEUs
- Improved FPU: denormalized number support
- Leverage existing software: maintain binary compatibility with LEON3 and LEON4

#### New fault tolerant features

- L1 cache SECDED ECC allows error correction on the fly
- Optional internal hardware scrubber for L1 and register file



- RISC-V processor core
- 64-bit (RV64I) implementation in GR765
  - Superscalar in order pipeline
- Same fault-tolerance features as LEON5FT
- Leverages RISC-V software and tool support in the commercial domain together with same level of software support provided by Gaisler as for the LEON line of processors

#### **GR765** feature set

- RISC-V RV64GCH
- Can run complex OS (like Linux), also within virtual machine
- OS-A Embedded RISC-V platform specification



### **NOEL-V – RISC-V Processor**

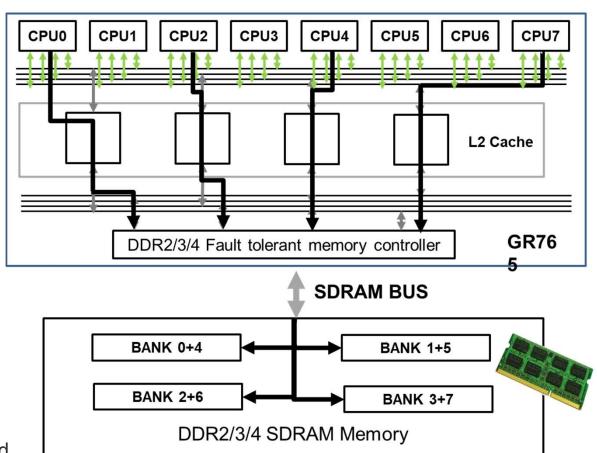
- RISC-V processor core
- Superscalar in order pipeline
- RV64GCH 64-bit processor
  - 64 Base integer instructions (I)
  - MUL/DIV (M)
  - Atomics (A)
  - Half/Single/Double Precision Float (Zfhmin, FD)
  - Compressed instructions (C)
  - Hypervisor (H)
  - Bit manipulation (subset of) (B)
  - Physical Memory Protection (PMP)
  - MMU 39 bit virtual addressing, separate I and D, fully associative, TLB
- Cache control extensions
  - Cacheline invalidate, zero, etc (Zicbom, Zicbop, Zicboz)
  - Cachability in page tables (Svpbmt)
- RISC-V Advanced Interrupt Architecture (AIA)



#### **Performance:**

- Comparable to ARM Cortex A53
- CoreMark\*/MHz: 5.02\*\*

<sup>\*</sup>gcc (ge0886d8ad) 15.0.1 20250330 (experimental)


<sup>-</sup>O3 -ffast-math -march=rv64imafdc\_zba\_zbb\_zbc\_zbs\_zbkb\_zbkc\_zbkx\_zicond\_zifencei\_zfh\_zicbom -mabi=lp64d -finline-functions --param max-inline-insns-auto=20 --param inline-min-speedup=10 -funswitch-loops -funroll-all-loops -fgcse-after-reload -fpredictive-commoning -fipa-cp-clone -falign-jumps=8 -falign-functions=8 --param=11-cache-line-size=32 --param=11-cache-size=16

<sup>\*\*</sup> Using "#define ee u32 int32 t" in core portme.h, as is common for 64 bit RISC-V.



# **GR765** – Improved interconnect

- Banked / Striped on-chip bus interconnect creating four separate L2+bus hierarchies that map to different internal banks of the SDRAM.
- CPUs accessing two different stripes will have zero interference on L2 hit and near-zero on L2 miss.
- Mapping between linear RAM address (as seen from software/DMA) and stripes reconfigurable.
   Can be tuned for performance/scaling, timing isolation or hybrid of the two.
- This striping approach is fully cache-coherent and transparent to software.



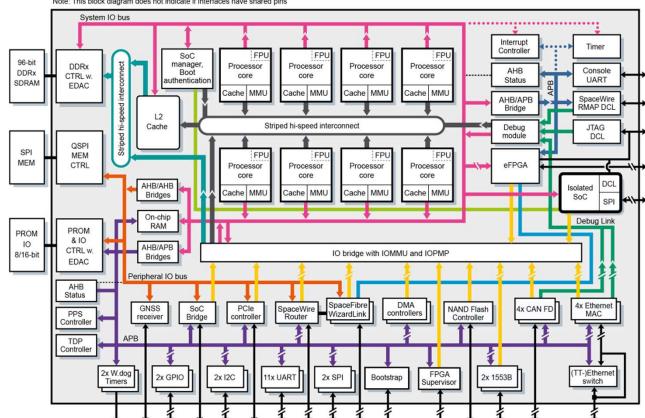




# Integrated peripherals



### **GR765** – Interfaces


#### Interfaces - SPARC and RISC-V mode

- PCle Gen 3 4-port x2, 2-port x4, with Root Complex
- SpaceFibre 4-port x1 6.25 Gbit/s + WizardLink support
- **12-port** SpaceWire router with +4 internal ports
- 4x 10/100/1000 Mbit Ethernet MACs connected TTEthernet capable switch with 14 external ports. And TSN support.
- 2x MIL-STD-1553B
- 4x CAN-FD
- 2x I2C, 12x UART, 2x SPI controller
- SoC bridge interface
- FPGA supervisor interface
- Timers & Watchdog, GPIO ports
- Debug links:
  - Dedicated: JTAG and SpaceWire
  - CAN. Ethernet

#### In development No guarantee of product launch

#### noel-V

Note: This block diagram does not indicate if interfaces have shared pins





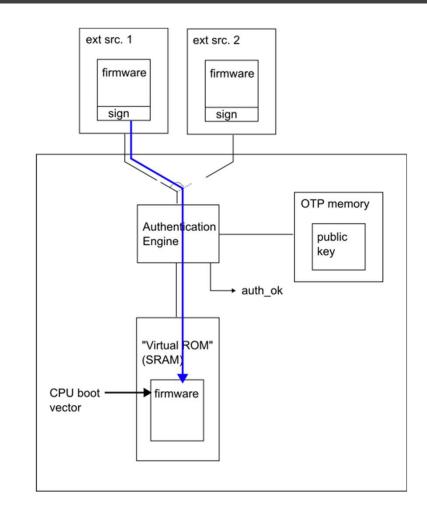
### **GR765** – embedded FPGA

- GR765 will incorporate a NanoXplore eFPGA
- 32k LUTs + 40x 48kbit BRAMs
- The eFPGA subsystem will be possible to operate without processor intervention.
- Reprogramming of the eFPGA will not affect processor execution.
- The eFPGA subsystem will be programmable from processors.
- AMBA AHB and APB ports will be accessible to processor subsystem.
- Bitstream authentication will be available.
- Supported by standard NanoXplore tool set.
- Supported by GRLIB IP cores.



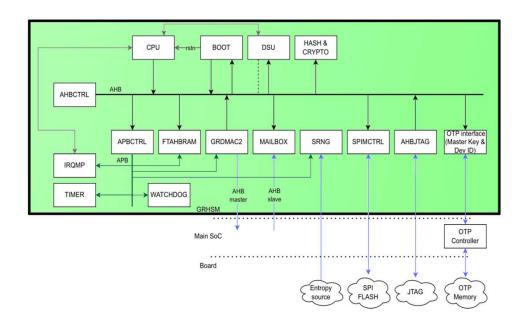







# Authenticated boot and security features




### **GR765 – Authenticated boot scheme**

- Scheme to extract first stage of software into on chip memory and verify cryptographic signature before CPU starts running
  - With retry from alternate sources
- Using hybrid classic+PQC public-key signature verification algorithm implemented in hardware with public key stored on-chip in one-time programmable memory (OTP).
- Software-free process, managed by central SoC boot manager state machine and using hardware crypto accelerator cores.





# **GR765 – Isolated Subsystem / Hardware Security Module**



 Separate SoC with private external SPI flash storage that interfaces the rest of the system via a mailbox interface. Independent execution after device reset.

- Intended usage is as a hardware security module to perform attestation, key generation and other security/crypto-related tasks.
- Cores for SHA256 acceleration, and entropy/randomness generators for key generation.
- Working with third party provider to develop offthe-shelf software offering for the Isolated Subsystem
- Not mandatory for using the rest of the device, for applications that do not require this type of functionality.

PUBLIC





# Software support

**Next-Generation SoC** 

# FRONTGRADE

# Software

- Complete ecosystem
- A combination of Gaisler and 3<sup>rd</sup> party software

# Tool chains, Operating systems and compilers

- Bare-C
- Linux
- RTEMS
- VxWorks
- Zephyr

### Hypervisors

- XtratuM/XNG (FentISS)
- PikeOS (SYSGO)
- Xvisor

#### **Boot loaders**

- MKPROM2
- GRBOOT Flight bootloader

#### Tools

- GRMON3
- TSIM3

















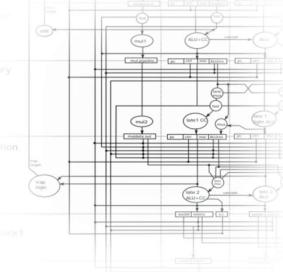
# **GR765** and **GR740** software compatibility

- LEON5FT maintains backward compatibility with LEON4FT
- Software running on top of environments such as RTEMS, VxWorks, Linux, ... should not require any changes if moving from GR740 to GR765 (updated OS will be provided by GSL)
- Example: unmodified LEON3 Linux image will boot on LEON5
- Redefinition of some internal processor configuration registers, may affect operating system, bootloaders, etc.
- Set of communication interfaces is kept and expanded but PCI is removed
- · Changes will be addressed in a software porting guide
  - Versions of communication controller IP may be updated, may require updated software drivers
  - Memory controllers and pin-mux control are updated
  - · Requires updates to bootloader
- Significant differences in timing (different processor microarchitecture, memory controller, bus structure, etc)
- Work ongoing to enable same level of software support for NOEL-V as for, and extending beyond, the LEON processors








# Conclusions

PUBLIC



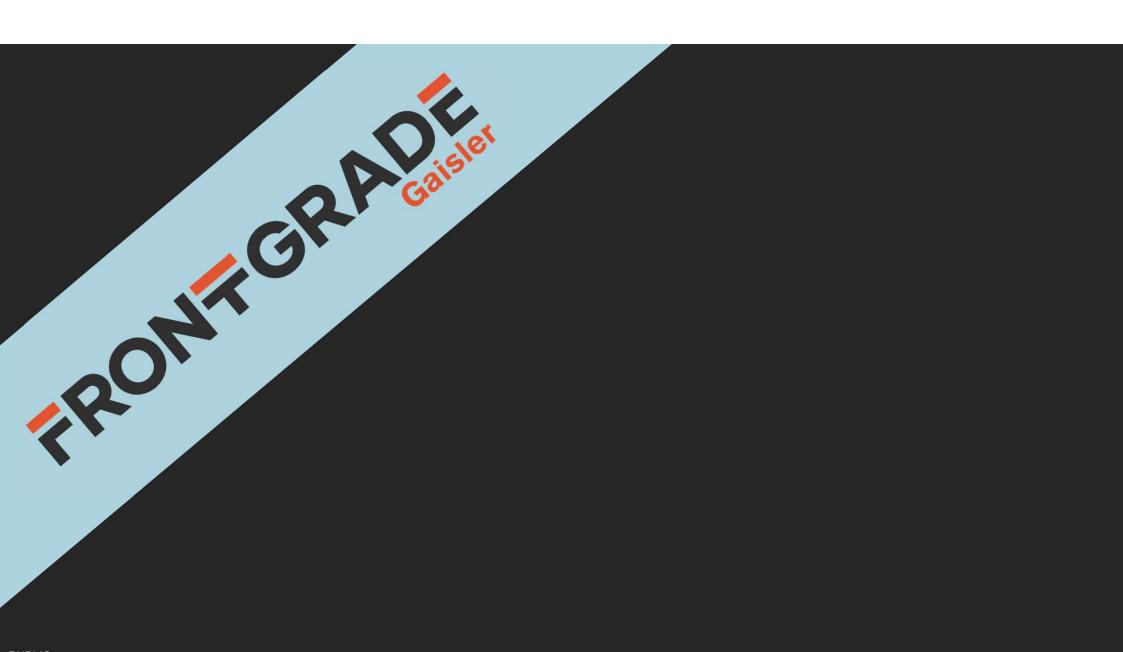
## **GR765 Conclusion**

- The GR765 development builds on the successful GR740 quad-core LEON4FT component, with a major leap in performance and numerous additional enhancements.
- The GR765 is an octa-core processor. Users can enable either eight NOEL-VFT RISC-V
   64-bit processor cores or eight LEON5FT cores.
- GR765 supports DDR2/3/4 SDRAM, high-speed serial link controllers and several other extensions.
- The GR765 development puts emphasis on computational performance, power
  efficiency, and support for mixed criticality application with a high degree of integration to
  allow an overall cost, space and power efficient board-level solution.
- The GR765 is supported by a strong software ecosystem.



noel-V

LEON5






# Thank you for listening!

hwww.gaisler.com/GR765

PUBLIC

