PRELIMINARY DESIGN OF THE STELLAR APPS SOFTWARE PLATFORM FOR DEVELOPING AND EXECUTING ON-BOARD APPLICATIONS

Hendrik Otte, Armin Purle-Kopacz, Kai Bleeke, Arnau Prat, Zain Haj Hammadeh, Andreas Lund, Jan-Gerd Meß, Michael Felderer, <u>Daniel Lüdtke</u>

German Aerospace Center (DLR)

Use Cases for Edge Computing and an Application Execution Platform



- AI-based autonomy and health management for constellations
- Sensor data preprocessing
- On-board scientific processing
- On-board digital twins
- Real-time processing of earth observation data and alarming (e.g. wild fires)
- Optical navigation for on-orbit servicing or rover navigation

Constellation Kepler - Credit: DLR (rendering), ESA/NASA (image of the Earth)

Robot and simulation setup at the European Proximity Operations Simulator

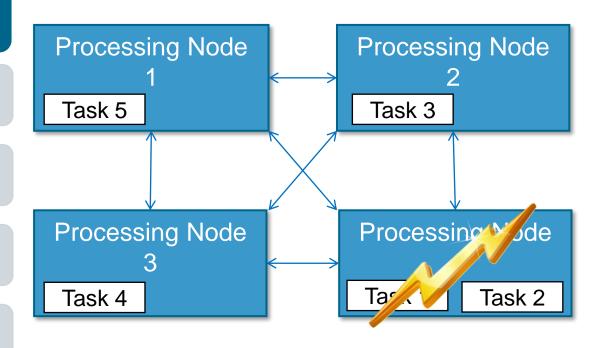
Scalable On-board computing for Space Avionics (ScOSA)

Combine space-qualified hardware with COTS (commercial-off-the-shelf) components

Reliable Computing Nodes (RCNs)

- Mission-critical tasks
- Fallback

High-Performance Nodes (HPNs)


High-performance tasks

In case of nodefailures

Reordering of the task mapping

Resilience

Autonomous reintegration of reactivated nodes

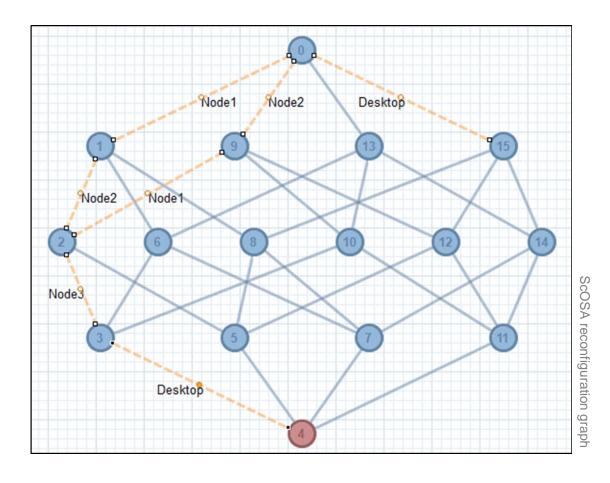
*Lüdtke, Daniel und Firchau, Thomas und Gonzalez Cortes, Carlos Eduardo und Lund, Andreas und Nepal, Ayush Mani und Elbarrawy, Mahmoud Mostafa Hussein Hassan und Haj Hammadeh, Zain Alabedin und Meß, Jan-Gerd und Kenny, Patrick und Brömer, Fiona und Mirzaagha, Michael und Saleip, George und Kirstein, Hannah und Kirchhefer, Christoph und Gerndt, Andreas (2023) ScOSA on the Way to Orbit: Reconfigurable High-Performance Computing for Spacecraft. In: Proceedings - 2023 IEEE Space Computing Conference, SCC 2023. 2023 IEEE Space Computing Conference (SCC), 2023-07-18 - 2023-07-21, Pasadena, CA, USA. doi: 10.1109/SCC57168.2023.00015. ISBN 979-8-3503-4143-0.

ScOSA Features

Scalability

- Heterogeneous architecture (CPU, FPGA)
- Combination of COTS and radiation tolerant processors
- Reconfiguration for new mission phases

Data-driven programming model


- Distributed middleware
- Event-based task activation
- Supports Linux and RTEMS

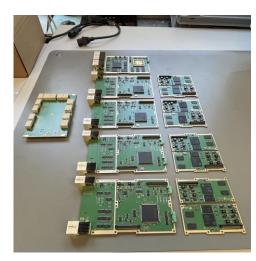
Network protocol (SpaceWire-IPC)

- Reliable messaging
- IPC between tasks on different nodes

Fault tolerance

- Distributed FDIR subsystem at data, task, node, and system levels
- Fault isolation of unreliable components
- Checkpointing

ScOSA Flight Experiment on CAPTn-1


■ Flight of a 9-node computer (8 Xilinx Zynq SoCs + 1 Leon3 GR 712 → 18 cores) on a 12U CubeSat in 2026

 Demonstrate system reliability and resilience in an operational space environment

Demonstrate at least 5 relevant applications (e.g. rendezvous navigation,

earth observation, ...)

Expected mission lifetime:1 year + 1 additional year

ScOSA boards

ScOSA payload integration

Lessons Learned from ScOSA

 Application developers want a more flexible development environment with custom libraries/runtimes

 Software integrators want strong separation and rights management for applications

Update procedures should be easier for iterative testing in orbit

Need for AI application environment

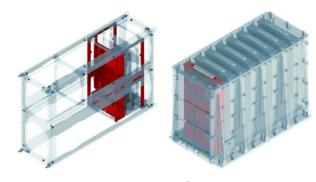
STELLAR APPS: ON-BOARD APPLICATION FRAMEWORK FOR SPACE MISSIONS

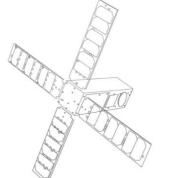
What is Stellar Apps?

The Stellar Apps software platform enables the secure, efficient, and flexible use of the spacecraft on-board computing capabilities by a variety of third-party applications. The main features include:

- Run applications in an isolated environment with configurable access to spacecraft and instrument data, ensuring the safety of the mission
- Enables incremental updates and replacement of applications inorbit to support multi-mission spacecraft
- Provides a software development environment similar to the real execution environment, reducing application time-to-space
- Enables AI applications by providing AI libraries and accelerators

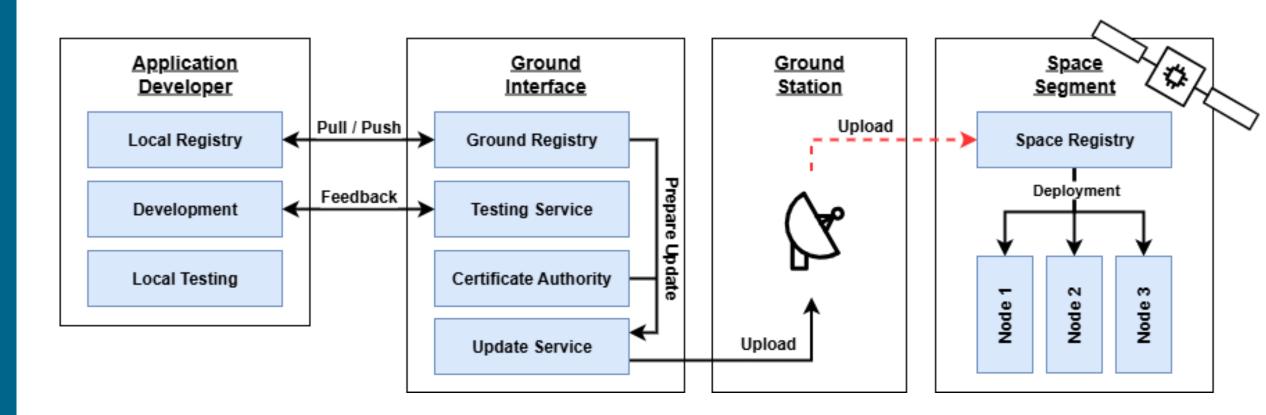
→ "App Store" for Spacecraft (without the "Store" part)


Stellar Apps Project



- Design and Development of the Stellar Apps Software Platform
- Evolution of the ScOSA OBC platform as EM for Stellar Apps
- Development of at least 7 DLR applications to increase the TRL including the possibility of flight testing
- Use of the 2nd mission year of CAPTn-1 for in-orbit demonstration of Stellar Apps and at least 6 applications

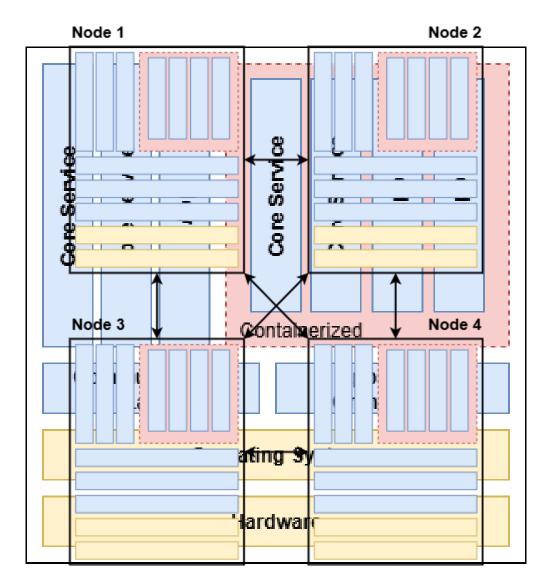
Key Requirements for the Software Platform


- 1. Isolation and separation of individual applications
- 2. Regular updates of applications
- 3. Strong cybersecurity measurements during the entire lifecycle of an application
- 4. Multi-tenant operations
- 5. Support for real-time applications
- 6. API-based communication between applications and the underlying hardware
- 7. Access to Al accelerators and commonly used runtime libraries
- 8. Distributed execution of applications on multiple computing nodes

Stellar Apps Software Platform

Main Components

Stellar Apps Layered Software Stack

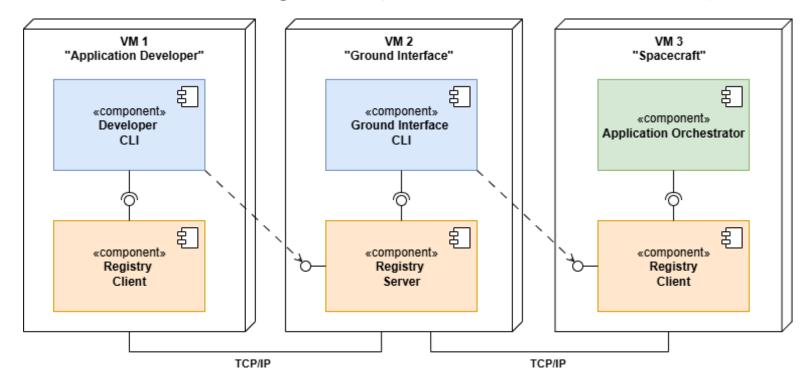


- Applications communicate with the
 - spacecraft components
 - other apps
 - ground

by an web-service like API

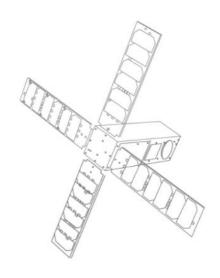
→ abstraction of PUS, CSP, CAN, SpW...

- Al support by at least PyTorch and TensorFlow
- System supports distributed computing



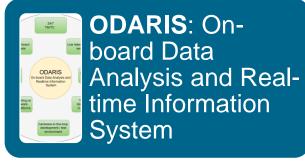
Proof-of-Concept Stellar Apps System

- Applications developed in Rust
- API support for C/C++ and Python (future)
- Apps are containers following the Open Container Initiave (OCI)


Conclusions & Outlook

- Stellar Apps platform enables edge computing for future space missions
- Stellar Apps Features:

isolated applications • real-time execution • AI support and acceleration • safety and cybersecurity features • fast to-orbit deployment • API-based communication



- We are interested to build an European "space app" ecosystem by defining a lightweight app API
- If you are interested to discuss: daniel.luedtke@dlr.de

Stellar Apps Applications



Satellite Attitude Estimation and Tracking

On-board Digital Twin

ScOSA System Software Software Stack

Operating systems

- GNU/Linux
- RTEMS (real-time operating system)

SpaceWire-IPC

- SpaceWire (and Ethernet) protocol to support
 - Inter-process communication (IPC)

Yokohama, Japan. doi: 10.1109/SpaceWire.2016.7771624. ISBN 978-0-9557-1968-4.

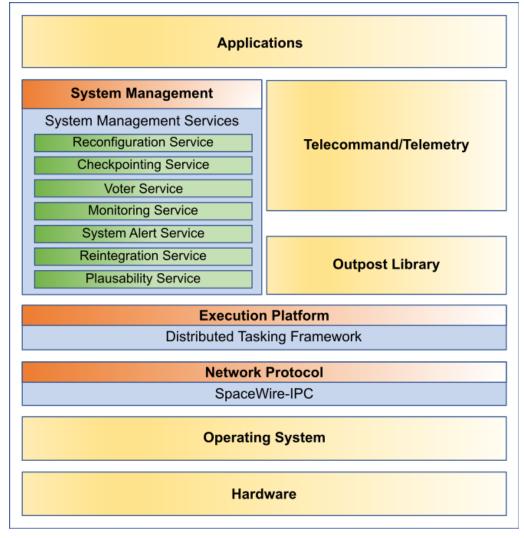
- Reliable / unreliable messages
- Large message transfer
- Reconfiguration

Applications System Management System Management Services Reconfiguration Service Telecommand/Telemetry Checkpointing Service Voter Service Monitoring Service System Alert Service Reintegration Service **Outpost Library** Plausability Service **Execution Platform Distributed Tasking Framework Network Protocol** SpaceWire-IPC Operating System Hardware

Peng, Ting und Weps, Benjamin und Höflinger, Kilian und Borchers, Kai und Lüdtke, Daniel und Gerndt, Andreas (2016) <u>A New SpaceWire Protocol for Reconfigurable Distributed On-Board Computers.</u> In: Proceedings of the 2016 7th International SpaceWire Conference, SpaceWire 2016, Seiten 175-182. International SpaceWire Conference 2016, 25.-27. Okt. 2016,

ScOSA System Software Middleware

STELLAR



Distributed Tasking Framework

- Event-driven, multithreaded middleware
- Distribute applications across multiple nodes
- https://github.com/DLR-SC/taskingframework

OUTPOST

- Library for low-level space system functions
- Abstraction layer for different hardware and operating systems
- Standardized communication protocols such as CCSDS and PUS
- https://github.com/DLR-RY/outpost-core

ScOSA's layered software stack

Imprint

Topic: Preliminary Design of the Stellar Apps Software

Platform for Developing and Executing On-board

Applications

Date: 2025-10-17

Author: Hendrik Otte, Armin Purle-Kopacz, Kai Bleeke, Arnau Prat,

Zain Haj Hammadeh,

Andreas Lund, Jan-Gerd Meß, Michael Felderer, Daniel Lüdtke

Institute: DLR Institute of Software Technology

Image credits: All images "DLR (CC BY-NC-ND 3.0)" unless otherwise stated